Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To address the question, we need to determine the relationship between the events "a flower is pink" and "a flower is a rose". We will check the independence of these two events using probabilities derived from the provided table.
Step-by-step solution:
1. Determine the total number of flowers in the table:
Total flowers = 315
2. Determine the number of pink flowers (regardless of type):
Total pink flowers = 60
3. Determine the number of roses (regardless of color):
Total roses = 105
4. Determine the number of flowers that are both pink and roses:
Pink roses = 20
5. Calculate the probability of a flower being pink (P(Pink)):
[tex]\( P(\text{Pink}) = \frac{\text{Total pink flowers}}{\text{Total flowers}} = \frac{60}{315} = 0.19047619047619047 \)[/tex]
6. Calculate the probability of a flower being a rose (P(Rose)):
[tex]\( P(\text{Rose}) = \frac{\text{Total roses}}{\text{Total flowers}} = \frac{105}{315} = 0.3333333333333333 \)[/tex]
7. Calculate the probability of a flower being both pink and a rose (P(Pink and Rose)):
[tex]\( P(\text{Pink and Rose}) = \frac{\text{Pink roses}}{\text{Total flowers}} = \frac{20}{315} = 0.06349206349206349 \)[/tex]
8. Calculate the product of the individual probabilities P(Pink) and P(Rose):
[tex]\( P(\text{Pink}) \times P(\text{Rose}) = 0.19047619047619047 \times 0.3333333333333333 = 0.06349206349206349 \)[/tex]
9. Compare P(Pink and Rose) with P(Pink) * P(Rose):
Since [tex]\( P(\text{Pink and Rose}) = P(\text{Pink}) \times P(\text{Rose}) = 0.06349206349206349 \)[/tex], this indicates that the events are independent.
10. Conclusion:
Since the calculated probabilities show that [tex]\( P(\text{Pink and Rose}) \)[/tex] is equal to [tex]\( P(\text{Pink}) \times P(\text{Rose}) \)[/tex], the events "a flower is pink" and "a flower is a rose" are independent events.
Therefore, the correct answer is:
A. A flower being pink and a flower being a rose are independent of each other.
Step-by-step solution:
1. Determine the total number of flowers in the table:
Total flowers = 315
2. Determine the number of pink flowers (regardless of type):
Total pink flowers = 60
3. Determine the number of roses (regardless of color):
Total roses = 105
4. Determine the number of flowers that are both pink and roses:
Pink roses = 20
5. Calculate the probability of a flower being pink (P(Pink)):
[tex]\( P(\text{Pink}) = \frac{\text{Total pink flowers}}{\text{Total flowers}} = \frac{60}{315} = 0.19047619047619047 \)[/tex]
6. Calculate the probability of a flower being a rose (P(Rose)):
[tex]\( P(\text{Rose}) = \frac{\text{Total roses}}{\text{Total flowers}} = \frac{105}{315} = 0.3333333333333333 \)[/tex]
7. Calculate the probability of a flower being both pink and a rose (P(Pink and Rose)):
[tex]\( P(\text{Pink and Rose}) = \frac{\text{Pink roses}}{\text{Total flowers}} = \frac{20}{315} = 0.06349206349206349 \)[/tex]
8. Calculate the product of the individual probabilities P(Pink) and P(Rose):
[tex]\( P(\text{Pink}) \times P(\text{Rose}) = 0.19047619047619047 \times 0.3333333333333333 = 0.06349206349206349 \)[/tex]
9. Compare P(Pink and Rose) with P(Pink) * P(Rose):
Since [tex]\( P(\text{Pink and Rose}) = P(\text{Pink}) \times P(\text{Rose}) = 0.06349206349206349 \)[/tex], this indicates that the events are independent.
10. Conclusion:
Since the calculated probabilities show that [tex]\( P(\text{Pink and Rose}) \)[/tex] is equal to [tex]\( P(\text{Pink}) \times P(\text{Rose}) \)[/tex], the events "a flower is pink" and "a flower is a rose" are independent events.
Therefore, the correct answer is:
A. A flower being pink and a flower being a rose are independent of each other.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.