At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's solve the given expression step-by-step.
We need to simplify the expression [tex]\(\frac{n^2 - 7n + 12}{(n - 3)(n + 4)}\)[/tex] and determine which of the given options it matches. Here’s the detailed solution:
1. Factor the Numerator:
We start with the numerator [tex]\(n^2 - 7n + 12\)[/tex]. We need to factorize it.
[tex]\[ n^2 - 7n + 12 \][/tex]
To factorize this quadratic expression, we look for two numbers that multiply to [tex]\(12\)[/tex] (the constant term) and add to [tex]\(-7\)[/tex] (the coefficient of [tex]\(n\)[/tex]).
These numbers are [tex]\(-3\)[/tex] and [tex]\(-4\)[/tex], since:
[tex]\[ -3 \times -4 = 12 \][/tex]
[tex]\[ -3 + (-4) = -7 \][/tex]
Therefore, we can write the numerator as:
[tex]\[ n^2 - 7n + 12 = (n - 3)(n - 4) \][/tex]
2. Simplify the Expression:
Now, substitute the factorized form of the numerator back into the original expression:
[tex]\[ \frac{(n - 3)(n - 4)}{(n - 3)(n + 4)} \][/tex]
Notice that both the numerator and the denominator have a common factor, [tex]\((n - 3)\)[/tex]. As long as [tex]\(n \neq 3\)[/tex], we can cancel this common factor:
[tex]\[ \frac{(n - 3)(n - 4)}{(n - 3)(n + 4)} = \frac{n - 4}{n + 4} \][/tex]
3. Result:
After cancelling the common factor, we have:
[tex]\[ \frac{n - 4}{n + 4} \][/tex]
Hence, the simplified form of the given expression [tex]\(\frac{n^2 - 7n + 12}{(n - 3)(n + 4)}\)[/tex] is [tex]\(\frac{n - 4}{n + 4}\)[/tex].
Therefore, the correct option that matches this simplified expression is:
[tex]\[ \boxed{\frac{n - 4}{n + 4}} \][/tex]
Which corresponds to the option:
D. [tex]\(\frac{n - 4}{n + 4}\)[/tex]
We need to simplify the expression [tex]\(\frac{n^2 - 7n + 12}{(n - 3)(n + 4)}\)[/tex] and determine which of the given options it matches. Here’s the detailed solution:
1. Factor the Numerator:
We start with the numerator [tex]\(n^2 - 7n + 12\)[/tex]. We need to factorize it.
[tex]\[ n^2 - 7n + 12 \][/tex]
To factorize this quadratic expression, we look for two numbers that multiply to [tex]\(12\)[/tex] (the constant term) and add to [tex]\(-7\)[/tex] (the coefficient of [tex]\(n\)[/tex]).
These numbers are [tex]\(-3\)[/tex] and [tex]\(-4\)[/tex], since:
[tex]\[ -3 \times -4 = 12 \][/tex]
[tex]\[ -3 + (-4) = -7 \][/tex]
Therefore, we can write the numerator as:
[tex]\[ n^2 - 7n + 12 = (n - 3)(n - 4) \][/tex]
2. Simplify the Expression:
Now, substitute the factorized form of the numerator back into the original expression:
[tex]\[ \frac{(n - 3)(n - 4)}{(n - 3)(n + 4)} \][/tex]
Notice that both the numerator and the denominator have a common factor, [tex]\((n - 3)\)[/tex]. As long as [tex]\(n \neq 3\)[/tex], we can cancel this common factor:
[tex]\[ \frac{(n - 3)(n - 4)}{(n - 3)(n + 4)} = \frac{n - 4}{n + 4} \][/tex]
3. Result:
After cancelling the common factor, we have:
[tex]\[ \frac{n - 4}{n + 4} \][/tex]
Hence, the simplified form of the given expression [tex]\(\frac{n^2 - 7n + 12}{(n - 3)(n + 4)}\)[/tex] is [tex]\(\frac{n - 4}{n + 4}\)[/tex].
Therefore, the correct option that matches this simplified expression is:
[tex]\[ \boxed{\frac{n - 4}{n + 4}} \][/tex]
Which corresponds to the option:
D. [tex]\(\frac{n - 4}{n + 4}\)[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.