Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which statements are tautologies, we need to analyze each given statement and check if it is always true, regardless of the truth values of [tex]\( p \)[/tex] and [tex]\( q \)[/tex].
1. Statement 1: [tex]\((p \vee q) \vee (p \rightarrow q)\)[/tex]
- Let's break this statement down:
- [tex]\( p \vee q \)[/tex]: This is true if at least one of [tex]\( p \)[/tex] or [tex]\( q \)[/tex] is true.
- [tex]\( p \rightarrow q \)[/tex]: This is an implication, which is true in every case except when [tex]\( p \)[/tex] is true and [tex]\( q \)[/tex] is false.
- The disjunction ([tex]\(\vee\)[/tex]) operator means the entire expression [tex]\((p \vee q) \vee (p \rightarrow q)\)[/tex] is true if at least one of the parts is true.
- Upon examining all possible truth values of [tex]\( p \)[/tex] and [tex]\( q \)[/tex], this statement is always true.
2. Statement 2: [tex]\((p \wedge q) \rightarrow (p \vee q)\)[/tex]
- Let's break this statement down:
- [tex]\( p \wedge q \)[/tex]: This is true only if both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are true.
- [tex]\( p \vee q \)[/tex]: This is true if at least one of [tex]\( p \)[/tex] or [tex]\( q \)[/tex] is true.
- The implication ([tex]\(\rightarrow\)[/tex]) operator means the entire expression [tex]\((p \wedge q) \rightarrow (p \vee q)\)[/tex] is true if [tex]\( p \wedge q \)[/tex] being true also implies that [tex]\( p \vee q \)[/tex] is true.
- If [tex]\( p \wedge q \)[/tex] is true, [tex]\( p \vee q \)[/tex] is necessarily true because both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are true. If [tex]\( p \wedge q \)[/tex] is false, the implication is true regardless of the truth value of [tex]\( p \vee q \)[/tex].
- Hence, this statement is always true.
3. Statement 3: [tex]\(q \rightarrow (p \wedge q)\)[/tex]
- Let's break this statement down:
- [tex]\( q \rightarrow (p \wedge q)\)[/tex]: This is an implication, which is true if [tex]\( q \)[/tex] implies [tex]\( p \)[/tex] and [tex]\( q \)[/tex].
- If [tex]\( q \)[/tex] is true, then for the implication to be true, [tex]\( p \wedge q \)[/tex] must also be true, meaning [tex]\( p \)[/tex] must be true.
- If [tex]\( q \)[/tex] is false, the implication [tex]\( q \rightarrow (p \wedge q) \)[/tex] is always true regardless of [tex]\( p \)[/tex].
- Testing the case where [tex]\( q \)[/tex] is true and [tex]\( p \)[/tex] is false, we find that [tex]\( q \rightarrow (p \rightarrow q) \)[/tex] is false.
- Hence, this statement is not always true.
4. Statement 4: [tex]\((p \vee q) \rightarrow p\)[/tex]
- Let's break this statement down:
- [tex]\( p \vee q \)[/tex]: This is true if at least one of [tex]\( p \)[/tex] or [tex]\( q \)[/tex] is true.
- The implication ([tex]\(\rightarrow\)[/tex]) operator means the entire expression [tex]\((p \vee q) \rightarrow p\)[/tex] is true if [tex]\( p \vee q \)[/tex] being true also implies that [tex]\( p \)[/tex] is true.
- There are cases where [tex]\( q \)[/tex] is true and [tex]\( p \)[/tex] is false, making [tex]\( p \vee q \)[/tex] true but the overall implication false because [tex]\( p \)[/tex] is false.
- Hence, this statement is not always true.
From the analysis above, the two statements that are always true (tautologies) are:
1. [tex]\((p \vee q) \vee (p \rightarrow q)\)[/tex]
2. [tex]\((p \wedge q) \rightarrow (p \vee q)\)[/tex]
These are the correct answers.
1. Statement 1: [tex]\((p \vee q) \vee (p \rightarrow q)\)[/tex]
- Let's break this statement down:
- [tex]\( p \vee q \)[/tex]: This is true if at least one of [tex]\( p \)[/tex] or [tex]\( q \)[/tex] is true.
- [tex]\( p \rightarrow q \)[/tex]: This is an implication, which is true in every case except when [tex]\( p \)[/tex] is true and [tex]\( q \)[/tex] is false.
- The disjunction ([tex]\(\vee\)[/tex]) operator means the entire expression [tex]\((p \vee q) \vee (p \rightarrow q)\)[/tex] is true if at least one of the parts is true.
- Upon examining all possible truth values of [tex]\( p \)[/tex] and [tex]\( q \)[/tex], this statement is always true.
2. Statement 2: [tex]\((p \wedge q) \rightarrow (p \vee q)\)[/tex]
- Let's break this statement down:
- [tex]\( p \wedge q \)[/tex]: This is true only if both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are true.
- [tex]\( p \vee q \)[/tex]: This is true if at least one of [tex]\( p \)[/tex] or [tex]\( q \)[/tex] is true.
- The implication ([tex]\(\rightarrow\)[/tex]) operator means the entire expression [tex]\((p \wedge q) \rightarrow (p \vee q)\)[/tex] is true if [tex]\( p \wedge q \)[/tex] being true also implies that [tex]\( p \vee q \)[/tex] is true.
- If [tex]\( p \wedge q \)[/tex] is true, [tex]\( p \vee q \)[/tex] is necessarily true because both [tex]\( p \)[/tex] and [tex]\( q \)[/tex] are true. If [tex]\( p \wedge q \)[/tex] is false, the implication is true regardless of the truth value of [tex]\( p \vee q \)[/tex].
- Hence, this statement is always true.
3. Statement 3: [tex]\(q \rightarrow (p \wedge q)\)[/tex]
- Let's break this statement down:
- [tex]\( q \rightarrow (p \wedge q)\)[/tex]: This is an implication, which is true if [tex]\( q \)[/tex] implies [tex]\( p \)[/tex] and [tex]\( q \)[/tex].
- If [tex]\( q \)[/tex] is true, then for the implication to be true, [tex]\( p \wedge q \)[/tex] must also be true, meaning [tex]\( p \)[/tex] must be true.
- If [tex]\( q \)[/tex] is false, the implication [tex]\( q \rightarrow (p \wedge q) \)[/tex] is always true regardless of [tex]\( p \)[/tex].
- Testing the case where [tex]\( q \)[/tex] is true and [tex]\( p \)[/tex] is false, we find that [tex]\( q \rightarrow (p \rightarrow q) \)[/tex] is false.
- Hence, this statement is not always true.
4. Statement 4: [tex]\((p \vee q) \rightarrow p\)[/tex]
- Let's break this statement down:
- [tex]\( p \vee q \)[/tex]: This is true if at least one of [tex]\( p \)[/tex] or [tex]\( q \)[/tex] is true.
- The implication ([tex]\(\rightarrow\)[/tex]) operator means the entire expression [tex]\((p \vee q) \rightarrow p\)[/tex] is true if [tex]\( p \vee q \)[/tex] being true also implies that [tex]\( p \)[/tex] is true.
- There are cases where [tex]\( q \)[/tex] is true and [tex]\( p \)[/tex] is false, making [tex]\( p \vee q \)[/tex] true but the overall implication false because [tex]\( p \)[/tex] is false.
- Hence, this statement is not always true.
From the analysis above, the two statements that are always true (tautologies) are:
1. [tex]\((p \vee q) \vee (p \rightarrow q)\)[/tex]
2. [tex]\((p \wedge q) \rightarrow (p \vee q)\)[/tex]
These are the correct answers.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.