Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the [tex]\( y \)[/tex]-intercept of the line passing through points [tex]\( M(-3, 5) \)[/tex] and [tex]\( N(2, 0) \)[/tex], we first need to determine the equation of the line. Here's the step-by-step process:
### Step 1: Identify the slope
The slope [tex]\( m \)[/tex] of a line passing through two points [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For points [tex]\( M(-3, 5) \)[/tex] and [tex]\( N(2, 0) \)[/tex]:
[tex]\[ m = \frac{0 - 5}{2 - (-3)} = \frac{-5}{2 + 3} = \frac{-5}{5} = -1 \][/tex]
### Step 2: Write the equation in point-slope form
Using the point-slope form of a line equation, [tex]\( y - y_1 = m(x - x_1) \)[/tex], and choosing point [tex]\( M(-3, 5) \)[/tex], we get:
[tex]\[ y - 5 = -1(x + 3) \][/tex]
### Step 3: Simplify the equation and isolate the y variable
Start by distributing the slope [tex]\( -1 \)[/tex] on the right side:
[tex]\[ y - 5 = -x - 3 \][/tex]
Next, isolate [tex]\( y \)[/tex] by adding 5 to both sides:
[tex]\[ y = -x - 3 + 5 \][/tex]
Simplifying this gives:
[tex]\[ y = -x + 2 \][/tex]
From the equation [tex]\( y = -x + 2 \)[/tex], we can see that the [tex]\( y \)[/tex]-intercept (the value of [tex]\( y \)[/tex] when [tex]\( x = 0 \)[/tex]) is [tex]\( 2 \)[/tex].
Thus, the [tex]\( y \)[/tex]-intercept of the line passing through points [tex]\( M \)[/tex] and [tex]\( N \)[/tex] is [tex]\( 2 \)[/tex].
### Standard Form of the Line Equation
The standard form of a line's equation is [tex]\( Ax + By = C \)[/tex]. To convert our equation [tex]\( y = -x + 2 \)[/tex] into standard form, we simply rearrange it:
[tex]\[ y = -x + 2 \implies x + y = 2 \][/tex]
So, the equation of the line in standard form is:
[tex]\[ x + y = 2 \][/tex]
### Step 1: Identify the slope
The slope [tex]\( m \)[/tex] of a line passing through two points [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For points [tex]\( M(-3, 5) \)[/tex] and [tex]\( N(2, 0) \)[/tex]:
[tex]\[ m = \frac{0 - 5}{2 - (-3)} = \frac{-5}{2 + 3} = \frac{-5}{5} = -1 \][/tex]
### Step 2: Write the equation in point-slope form
Using the point-slope form of a line equation, [tex]\( y - y_1 = m(x - x_1) \)[/tex], and choosing point [tex]\( M(-3, 5) \)[/tex], we get:
[tex]\[ y - 5 = -1(x + 3) \][/tex]
### Step 3: Simplify the equation and isolate the y variable
Start by distributing the slope [tex]\( -1 \)[/tex] on the right side:
[tex]\[ y - 5 = -x - 3 \][/tex]
Next, isolate [tex]\( y \)[/tex] by adding 5 to both sides:
[tex]\[ y = -x - 3 + 5 \][/tex]
Simplifying this gives:
[tex]\[ y = -x + 2 \][/tex]
From the equation [tex]\( y = -x + 2 \)[/tex], we can see that the [tex]\( y \)[/tex]-intercept (the value of [tex]\( y \)[/tex] when [tex]\( x = 0 \)[/tex]) is [tex]\( 2 \)[/tex].
Thus, the [tex]\( y \)[/tex]-intercept of the line passing through points [tex]\( M \)[/tex] and [tex]\( N \)[/tex] is [tex]\( 2 \)[/tex].
### Standard Form of the Line Equation
The standard form of a line's equation is [tex]\( Ax + By = C \)[/tex]. To convert our equation [tex]\( y = -x + 2 \)[/tex] into standard form, we simply rearrange it:
[tex]\[ y = -x + 2 \implies x + y = 2 \][/tex]
So, the equation of the line in standard form is:
[tex]\[ x + y = 2 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.