At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the correct expression for calculating centripetal acceleration, we need to refer to the fundamental formula for centripetal acceleration, which is:
[tex]\[ a_c = \frac{v^2}{r} \][/tex]
where:
- [tex]\( a_c \)[/tex] is the centripetal acceleration,
- [tex]\( v \)[/tex] is the tangential velocity,
- [tex]\( r \)[/tex] is the radius of the circular path.
When an object is moving in uniform circular motion, its tangential velocity [tex]\( v \)[/tex] can be expressed in terms of the time period [tex]\( T \)[/tex]:
[tex]\[ v = \frac{2 \pi r}{T} \][/tex]
This is because the distance traveled in one complete revolution is the circumference of the circle, [tex]\( 2 \pi r \)[/tex], and the time to complete one revolution is [tex]\( T \)[/tex].
Substituting [tex]\( v \)[/tex] into the centripetal acceleration formula:
[tex]\[ a_c = \left( \frac{2 \pi r}{T} \right)^2 \div r \][/tex]
Simplifying this, we get:
[tex]\[ a_c = \frac{(2 \pi r)^2}{T^2 r} = \frac{4 \pi^2 r^2}{T^2 r} = \frac{4 \pi^2 r}{T^2} \][/tex]
From this derivation, we can see that the correct expression for centripetal acceleration is:
[tex]\[ \boxed{\frac{4 \pi^2 r}{T^2}} \][/tex]
The matches with the second provided option, making the correct answer:
[tex]\[ \boxed{2} \][/tex]
[tex]\[ a_c = \frac{v^2}{r} \][/tex]
where:
- [tex]\( a_c \)[/tex] is the centripetal acceleration,
- [tex]\( v \)[/tex] is the tangential velocity,
- [tex]\( r \)[/tex] is the radius of the circular path.
When an object is moving in uniform circular motion, its tangential velocity [tex]\( v \)[/tex] can be expressed in terms of the time period [tex]\( T \)[/tex]:
[tex]\[ v = \frac{2 \pi r}{T} \][/tex]
This is because the distance traveled in one complete revolution is the circumference of the circle, [tex]\( 2 \pi r \)[/tex], and the time to complete one revolution is [tex]\( T \)[/tex].
Substituting [tex]\( v \)[/tex] into the centripetal acceleration formula:
[tex]\[ a_c = \left( \frac{2 \pi r}{T} \right)^2 \div r \][/tex]
Simplifying this, we get:
[tex]\[ a_c = \frac{(2 \pi r)^2}{T^2 r} = \frac{4 \pi^2 r^2}{T^2 r} = \frac{4 \pi^2 r}{T^2} \][/tex]
From this derivation, we can see that the correct expression for centripetal acceleration is:
[tex]\[ \boxed{\frac{4 \pi^2 r}{T^2}} \][/tex]
The matches with the second provided option, making the correct answer:
[tex]\[ \boxed{2} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.