Answered

Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Consider the function [tex]$f(x)=6 \sqrt{x}+10$[/tex] on the interval [tex][1,7][/tex].

1. Find the average or mean slope of the function on this interval.

By the Mean Value Theorem, we know there exists a [tex]$c$[/tex] in the open interval [tex](1,7)[/tex] such that [tex]$f^{\prime}(c)$[/tex] is equal to this mean slope. For this problem, there is only one [tex][tex]$c$[/tex][/tex] that works.

2. Find it.


Sagot :

To solve this problem, let's work through it in a step-by-step manner.

1. Define the function and the interval:
The function given is [tex]\( f(x) = 6\sqrt{x} + 10 \)[/tex]. The interval we are interested in is [tex]\([1, 7]\)[/tex].

2. Compute [tex]\( f(a) \)[/tex] and [tex]\( f(b) \)[/tex]:
We need to evaluate the function at the endpoints of the interval.
- For [tex]\( a = 1 \)[/tex]:
[tex]\[ f(1) = 6\sqrt{1} + 10 = 6 \cdot 1 + 10 = 16 \][/tex]
- For [tex]\( b = 7 \)[/tex]:
[tex]\[ f(7) = 6\sqrt{7} + 10 \][/tex]

3. Compute the mean slope of the function on the interval [tex]\([1, 7]\)[/tex]:
The mean slope is given by:
[tex]\[ \frac{f(b) - f(a)}{b - a} \][/tex]
Substituting the values, we get:
[tex]\[ \frac{(6\sqrt{7} + 10) - 16}{7 - 1} = \frac{6\sqrt{7} + 10 - 16}{6} = \frac{6\sqrt{7} - 6}{6} = \sqrt{7} - 1 \][/tex]

4. Find the derivative of [tex]\( f(x) \)[/tex]:
The derivative of the function [tex]\( f(x) = 6\sqrt{x} + 10 \)[/tex] is:
[tex]\[ f'(x) = \frac{d}{dx} \left( 6\sqrt{x} + 10 \right) = 6 \cdot \frac{1}{2} \cdot x^{-1/2} = \frac{3}{\sqrt{x}} \][/tex]

5. Set the derivative equal to the mean slope to find [tex]\( c \)[/tex]:
According to the Mean Value Theorem, there exists some [tex]\( c \)[/tex] in the open interval [tex]\( (1, 7) \)[/tex] such that [tex]\( f'(c) \)[/tex] is equal to the mean slope. So, we set:
[tex]\[ f'(c) = \sqrt{7} - 1 \][/tex]
[tex]\[ \frac{3}{\sqrt{c}} = \sqrt{7} - 1 \][/tex]

6. Solve for [tex]\( c \)[/tex]:
Rearrange the equation to solve for [tex]\( c \)[/tex]:
[tex]\[ 3 = (\sqrt{7} - 1)\sqrt{c} \][/tex]
[tex]\[ \sqrt{c} = \frac{3}{\sqrt{7} - 1} \][/tex]

Squaring both sides to solve for [tex]\( c \)[/tex]:
[tex]\[ c = \left( \frac{3}{\sqrt{7} - 1} \right)^2 \][/tex]

7. Simplify the expression for [tex]\( c \)[/tex]:
Simplify the right side of the equation:
[tex]\[ c = \left( \frac{3}{\sqrt{7} - 1} \right)^2 = \frac{9}{(\sqrt{7} - 1)^2} \][/tex]

Therefore, the value of [tex]\( c \)[/tex] in the interval [tex]\( (1, 7) \)[/tex] that satisfies the Mean Value Theorem is:
[tex]\[ c = \frac{9}{(\sqrt{7} - 1)^2} \][/tex]

Thus, we have found that the [tex]\( c \)[/tex] such that [tex]\( f'(c) = \sqrt{7} - 1 \)[/tex] within the interval [tex]\( (1, 7) \)[/tex] is [tex]\( \frac{9}{(\sqrt{7} - 1)^2} \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.