Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine which expression is equivalent to [tex]\( x^3 y^{-7} \)[/tex], let's analyze it step by step:
1. Understand the expression [tex]\( y^{-7} \)[/tex]:
- According to the rules of exponents, a negative exponent indicates that the base should be moved to the denominator and then the exponent be made positive. For instance, [tex]\( y^{-7} \)[/tex] can be rewritten as [tex]\( \frac{1}{y^7} \)[/tex].
2. Rewrite [tex]\( x^3 y^{-7} \)[/tex]:
- Given [tex]\( y^{-7} \)[/tex] can be written as [tex]\( \frac{1}{y^7} \)[/tex], the expression [tex]\( x^3 y^{-7} \)[/tex] can be rewritten by substituting [tex]\( y^{-7} \)[/tex] with [tex]\( \frac{1}{y^7} \)[/tex].
- This gives us: [tex]\( x^3 y^{-7} = x^3 \cdot \frac{1}{y^7} \)[/tex].
3. Perform the multiplication:
- Multiplying [tex]\( x^3 \)[/tex] by [tex]\( \frac{1}{y^7} \)[/tex] results in [tex]\( \frac{x^3}{y^7} \)[/tex].
4. Identify the equivalent expression:
- The expression [tex]\( \frac{x^3}{y^7} \)[/tex] matches the second option given in the multiple-choice question.
Thus, the correct expression equivalent to [tex]\( x^3 y^{-7} \)[/tex] is:
[tex]\(\boxed{\frac{x^3}{y^7}}\)[/tex]
1. Understand the expression [tex]\( y^{-7} \)[/tex]:
- According to the rules of exponents, a negative exponent indicates that the base should be moved to the denominator and then the exponent be made positive. For instance, [tex]\( y^{-7} \)[/tex] can be rewritten as [tex]\( \frac{1}{y^7} \)[/tex].
2. Rewrite [tex]\( x^3 y^{-7} \)[/tex]:
- Given [tex]\( y^{-7} \)[/tex] can be written as [tex]\( \frac{1}{y^7} \)[/tex], the expression [tex]\( x^3 y^{-7} \)[/tex] can be rewritten by substituting [tex]\( y^{-7} \)[/tex] with [tex]\( \frac{1}{y^7} \)[/tex].
- This gives us: [tex]\( x^3 y^{-7} = x^3 \cdot \frac{1}{y^7} \)[/tex].
3. Perform the multiplication:
- Multiplying [tex]\( x^3 \)[/tex] by [tex]\( \frac{1}{y^7} \)[/tex] results in [tex]\( \frac{x^3}{y^7} \)[/tex].
4. Identify the equivalent expression:
- The expression [tex]\( \frac{x^3}{y^7} \)[/tex] matches the second option given in the multiple-choice question.
Thus, the correct expression equivalent to [tex]\( x^3 y^{-7} \)[/tex] is:
[tex]\(\boxed{\frac{x^3}{y^7}}\)[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.