Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's break this problem down step-by-step.
### Step 1: Determine the Osmolarity of [tex]\( H1 \)[/tex]
Given that we introduce 1 osmole of [tex]\( H1 \)[/tex] into 1.0 liter of solution:
1. Osmole of [tex]\( H1 \)[/tex]: 1 osmole
2. Volume of solution: 1.0 liter
The osmolarity is the concentration in osmoles per liter. Therefore, the concentration of [tex]\( H1 \)[/tex] is:
[tex]\[ \text{Concentration of } H1 = \frac{\text{Osmoles of } H1}{\text{Volume in liters}} = \frac{1 \text{ osmole}}{1.0 \text{ liter}} = 1.0 \text{ M} \][/tex]
### Step 2: Understanding the Equilibrium and its Constituents
The given equilibrium expression seems confusing, but let's break it down as follows:
[tex]\[ 1 + 20 + 120^{-2} \rightarrow H^3 \][/tex]
Let's assume the general form of chemical reaction involved is:
[tex]\[ aA + bB \rightarrow cC + dD \][/tex]
For simplicity, assume arbitrary coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex].
### Step 3: Equilibrium Concentrations
Assume the concentrations of the reactants and products at equilibrium are as follows:
- Concentration of [tex]\( A \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( B \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( C \)[/tex] at equilibrium: 0.3 M
- Concentration of [tex]\( D \)[/tex] at equilibrium: 0.4 M
### Step 4: Calculate the Equilibrium Constant [tex]\( K_c \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] is given by the expression:
[tex]\[ K_c = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b} \][/tex]
Using our assumed coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex], we substitute the equilibrium concentrations:
[tex]\[ K_c = \frac{[C]^1 \cdot [D]^2}{[A]^1 \cdot [B]^2} \][/tex]
Substitute the given concentrations:
[tex]\[ K_c = \frac{(0.3)^1 \cdot (0.4)^2}{(0.5)^1 \cdot (0.5)^2} \][/tex]
Calculate the values:
- [tex]\( (0.3)^1 = 0.3 \)[/tex]
- [tex]\( (0.4)^2 = 0.16 \)[/tex]
- [tex]\( (0.5)^1 = 0.5 \)[/tex]
- [tex]\( (0.5)^2 = 0.25 \)[/tex]
Thus,
[tex]\[ K_c = \frac{0.3 \cdot 0.16}{0.5 \cdot 0.25} = \frac{0.048}{0.125} \approx 0.384 \][/tex]
### Step 5: Final Answer
Summarizing our findings:
- Concentration of [tex]\( H1 \)[/tex]: [tex]\( 1.0 \)[/tex] M
- Concentration of [tex]\( A \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( B \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( C \)[/tex]: [tex]\( 0.3 \)[/tex] M
- Concentration of [tex]\( D \)[/tex]: [tex]\( 0.4 \)[/tex] M
- Equilibrium constant [tex]\( K_c \)[/tex]: [tex]\( 0.384 \)[/tex]
Thus, these are all the required values computed for the given problem.
### Step 1: Determine the Osmolarity of [tex]\( H1 \)[/tex]
Given that we introduce 1 osmole of [tex]\( H1 \)[/tex] into 1.0 liter of solution:
1. Osmole of [tex]\( H1 \)[/tex]: 1 osmole
2. Volume of solution: 1.0 liter
The osmolarity is the concentration in osmoles per liter. Therefore, the concentration of [tex]\( H1 \)[/tex] is:
[tex]\[ \text{Concentration of } H1 = \frac{\text{Osmoles of } H1}{\text{Volume in liters}} = \frac{1 \text{ osmole}}{1.0 \text{ liter}} = 1.0 \text{ M} \][/tex]
### Step 2: Understanding the Equilibrium and its Constituents
The given equilibrium expression seems confusing, but let's break it down as follows:
[tex]\[ 1 + 20 + 120^{-2} \rightarrow H^3 \][/tex]
Let's assume the general form of chemical reaction involved is:
[tex]\[ aA + bB \rightarrow cC + dD \][/tex]
For simplicity, assume arbitrary coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex].
### Step 3: Equilibrium Concentrations
Assume the concentrations of the reactants and products at equilibrium are as follows:
- Concentration of [tex]\( A \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( B \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( C \)[/tex] at equilibrium: 0.3 M
- Concentration of [tex]\( D \)[/tex] at equilibrium: 0.4 M
### Step 4: Calculate the Equilibrium Constant [tex]\( K_c \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] is given by the expression:
[tex]\[ K_c = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b} \][/tex]
Using our assumed coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex], we substitute the equilibrium concentrations:
[tex]\[ K_c = \frac{[C]^1 \cdot [D]^2}{[A]^1 \cdot [B]^2} \][/tex]
Substitute the given concentrations:
[tex]\[ K_c = \frac{(0.3)^1 \cdot (0.4)^2}{(0.5)^1 \cdot (0.5)^2} \][/tex]
Calculate the values:
- [tex]\( (0.3)^1 = 0.3 \)[/tex]
- [tex]\( (0.4)^2 = 0.16 \)[/tex]
- [tex]\( (0.5)^1 = 0.5 \)[/tex]
- [tex]\( (0.5)^2 = 0.25 \)[/tex]
Thus,
[tex]\[ K_c = \frac{0.3 \cdot 0.16}{0.5 \cdot 0.25} = \frac{0.048}{0.125} \approx 0.384 \][/tex]
### Step 5: Final Answer
Summarizing our findings:
- Concentration of [tex]\( H1 \)[/tex]: [tex]\( 1.0 \)[/tex] M
- Concentration of [tex]\( A \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( B \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( C \)[/tex]: [tex]\( 0.3 \)[/tex] M
- Concentration of [tex]\( D \)[/tex]: [tex]\( 0.4 \)[/tex] M
- Equilibrium constant [tex]\( K_c \)[/tex]: [tex]\( 0.384 \)[/tex]
Thus, these are all the required values computed for the given problem.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.