Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Introduce 1 mole of [tex]H_1[/tex] into 1.0 L of water. The solution is then heated, causing [tex]H_1[/tex] to decompose. Write the equilibrium expression for the reaction:

[tex]\[ H_1 \rightleftharpoons 1 + 20 + 120^{-2} H^3 \][/tex]


Sagot :

Sure, let's break this problem down step-by-step.

### Step 1: Determine the Osmolarity of [tex]\( H1 \)[/tex]

Given that we introduce 1 osmole of [tex]\( H1 \)[/tex] into 1.0 liter of solution:

1. Osmole of [tex]\( H1 \)[/tex]: 1 osmole
2. Volume of solution: 1.0 liter

The osmolarity is the concentration in osmoles per liter. Therefore, the concentration of [tex]\( H1 \)[/tex] is:

[tex]\[ \text{Concentration of } H1 = \frac{\text{Osmoles of } H1}{\text{Volume in liters}} = \frac{1 \text{ osmole}}{1.0 \text{ liter}} = 1.0 \text{ M} \][/tex]

### Step 2: Understanding the Equilibrium and its Constituents

The given equilibrium expression seems confusing, but let's break it down as follows:

[tex]\[ 1 + 20 + 120^{-2} \rightarrow H^3 \][/tex]

Let's assume the general form of chemical reaction involved is:

[tex]\[ aA + bB \rightarrow cC + dD \][/tex]

For simplicity, assume arbitrary coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex].

### Step 3: Equilibrium Concentrations

Assume the concentrations of the reactants and products at equilibrium are as follows:

- Concentration of [tex]\( A \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( B \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( C \)[/tex] at equilibrium: 0.3 M
- Concentration of [tex]\( D \)[/tex] at equilibrium: 0.4 M

### Step 4: Calculate the Equilibrium Constant [tex]\( K_c \)[/tex]

The equilibrium constant [tex]\( K_c \)[/tex] is given by the expression:

[tex]\[ K_c = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b} \][/tex]

Using our assumed coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex], we substitute the equilibrium concentrations:

[tex]\[ K_c = \frac{[C]^1 \cdot [D]^2}{[A]^1 \cdot [B]^2} \][/tex]

Substitute the given concentrations:

[tex]\[ K_c = \frac{(0.3)^1 \cdot (0.4)^2}{(0.5)^1 \cdot (0.5)^2} \][/tex]

Calculate the values:

- [tex]\( (0.3)^1 = 0.3 \)[/tex]
- [tex]\( (0.4)^2 = 0.16 \)[/tex]
- [tex]\( (0.5)^1 = 0.5 \)[/tex]
- [tex]\( (0.5)^2 = 0.25 \)[/tex]

Thus,

[tex]\[ K_c = \frac{0.3 \cdot 0.16}{0.5 \cdot 0.25} = \frac{0.048}{0.125} \approx 0.384 \][/tex]

### Step 5: Final Answer

Summarizing our findings:

- Concentration of [tex]\( H1 \)[/tex]: [tex]\( 1.0 \)[/tex] M
- Concentration of [tex]\( A \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( B \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( C \)[/tex]: [tex]\( 0.3 \)[/tex] M
- Concentration of [tex]\( D \)[/tex]: [tex]\( 0.4 \)[/tex] M
- Equilibrium constant [tex]\( K_c \)[/tex]: [tex]\( 0.384 \)[/tex]

Thus, these are all the required values computed for the given problem.