Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's break this problem down step-by-step.
### Step 1: Determine the Osmolarity of [tex]\( H1 \)[/tex]
Given that we introduce 1 osmole of [tex]\( H1 \)[/tex] into 1.0 liter of solution:
1. Osmole of [tex]\( H1 \)[/tex]: 1 osmole
2. Volume of solution: 1.0 liter
The osmolarity is the concentration in osmoles per liter. Therefore, the concentration of [tex]\( H1 \)[/tex] is:
[tex]\[ \text{Concentration of } H1 = \frac{\text{Osmoles of } H1}{\text{Volume in liters}} = \frac{1 \text{ osmole}}{1.0 \text{ liter}} = 1.0 \text{ M} \][/tex]
### Step 2: Understanding the Equilibrium and its Constituents
The given equilibrium expression seems confusing, but let's break it down as follows:
[tex]\[ 1 + 20 + 120^{-2} \rightarrow H^3 \][/tex]
Let's assume the general form of chemical reaction involved is:
[tex]\[ aA + bB \rightarrow cC + dD \][/tex]
For simplicity, assume arbitrary coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex].
### Step 3: Equilibrium Concentrations
Assume the concentrations of the reactants and products at equilibrium are as follows:
- Concentration of [tex]\( A \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( B \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( C \)[/tex] at equilibrium: 0.3 M
- Concentration of [tex]\( D \)[/tex] at equilibrium: 0.4 M
### Step 4: Calculate the Equilibrium Constant [tex]\( K_c \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] is given by the expression:
[tex]\[ K_c = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b} \][/tex]
Using our assumed coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex], we substitute the equilibrium concentrations:
[tex]\[ K_c = \frac{[C]^1 \cdot [D]^2}{[A]^1 \cdot [B]^2} \][/tex]
Substitute the given concentrations:
[tex]\[ K_c = \frac{(0.3)^1 \cdot (0.4)^2}{(0.5)^1 \cdot (0.5)^2} \][/tex]
Calculate the values:
- [tex]\( (0.3)^1 = 0.3 \)[/tex]
- [tex]\( (0.4)^2 = 0.16 \)[/tex]
- [tex]\( (0.5)^1 = 0.5 \)[/tex]
- [tex]\( (0.5)^2 = 0.25 \)[/tex]
Thus,
[tex]\[ K_c = \frac{0.3 \cdot 0.16}{0.5 \cdot 0.25} = \frac{0.048}{0.125} \approx 0.384 \][/tex]
### Step 5: Final Answer
Summarizing our findings:
- Concentration of [tex]\( H1 \)[/tex]: [tex]\( 1.0 \)[/tex] M
- Concentration of [tex]\( A \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( B \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( C \)[/tex]: [tex]\( 0.3 \)[/tex] M
- Concentration of [tex]\( D \)[/tex]: [tex]\( 0.4 \)[/tex] M
- Equilibrium constant [tex]\( K_c \)[/tex]: [tex]\( 0.384 \)[/tex]
Thus, these are all the required values computed for the given problem.
### Step 1: Determine the Osmolarity of [tex]\( H1 \)[/tex]
Given that we introduce 1 osmole of [tex]\( H1 \)[/tex] into 1.0 liter of solution:
1. Osmole of [tex]\( H1 \)[/tex]: 1 osmole
2. Volume of solution: 1.0 liter
The osmolarity is the concentration in osmoles per liter. Therefore, the concentration of [tex]\( H1 \)[/tex] is:
[tex]\[ \text{Concentration of } H1 = \frac{\text{Osmoles of } H1}{\text{Volume in liters}} = \frac{1 \text{ osmole}}{1.0 \text{ liter}} = 1.0 \text{ M} \][/tex]
### Step 2: Understanding the Equilibrium and its Constituents
The given equilibrium expression seems confusing, but let's break it down as follows:
[tex]\[ 1 + 20 + 120^{-2} \rightarrow H^3 \][/tex]
Let's assume the general form of chemical reaction involved is:
[tex]\[ aA + bB \rightarrow cC + dD \][/tex]
For simplicity, assume arbitrary coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex].
### Step 3: Equilibrium Concentrations
Assume the concentrations of the reactants and products at equilibrium are as follows:
- Concentration of [tex]\( A \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( B \)[/tex] at equilibrium: 0.5 M
- Concentration of [tex]\( C \)[/tex] at equilibrium: 0.3 M
- Concentration of [tex]\( D \)[/tex] at equilibrium: 0.4 M
### Step 4: Calculate the Equilibrium Constant [tex]\( K_c \)[/tex]
The equilibrium constant [tex]\( K_c \)[/tex] is given by the expression:
[tex]\[ K_c = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b} \][/tex]
Using our assumed coefficients [tex]\( a, b, c, d = 1, 2, 1, 2 \)[/tex], we substitute the equilibrium concentrations:
[tex]\[ K_c = \frac{[C]^1 \cdot [D]^2}{[A]^1 \cdot [B]^2} \][/tex]
Substitute the given concentrations:
[tex]\[ K_c = \frac{(0.3)^1 \cdot (0.4)^2}{(0.5)^1 \cdot (0.5)^2} \][/tex]
Calculate the values:
- [tex]\( (0.3)^1 = 0.3 \)[/tex]
- [tex]\( (0.4)^2 = 0.16 \)[/tex]
- [tex]\( (0.5)^1 = 0.5 \)[/tex]
- [tex]\( (0.5)^2 = 0.25 \)[/tex]
Thus,
[tex]\[ K_c = \frac{0.3 \cdot 0.16}{0.5 \cdot 0.25} = \frac{0.048}{0.125} \approx 0.384 \][/tex]
### Step 5: Final Answer
Summarizing our findings:
- Concentration of [tex]\( H1 \)[/tex]: [tex]\( 1.0 \)[/tex] M
- Concentration of [tex]\( A \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( B \)[/tex]: [tex]\( 0.5 \)[/tex] M
- Concentration of [tex]\( C \)[/tex]: [tex]\( 0.3 \)[/tex] M
- Concentration of [tex]\( D \)[/tex]: [tex]\( 0.4 \)[/tex] M
- Equilibrium constant [tex]\( K_c \)[/tex]: [tex]\( 0.384 \)[/tex]
Thus, these are all the required values computed for the given problem.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.