Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's go through the calculations step-by-step to solve the given problem.
### 1. Finding the distance of the image from the lens
Given:
- Object height ([tex]\( h_o \)[/tex]) = 9.0 cm
- Object distance ([tex]\( d_o \)[/tex]) = 3.0 cm
- Focal length ([tex]\( f \)[/tex]) = -12.0 cm
We need to find the image distance ([tex]\( d_i \)[/tex]). We can use the lens formula:
[tex]\[ \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \][/tex]
Rearranging to solve for [tex]\( \frac{1}{d_i} \)[/tex]:
[tex]\[ \frac{1}{d_i} = \frac{1}{f} - \frac{1}{d_o} \][/tex]
Substituting the known values:
[tex]\[ \frac{1}{d_i} = \frac{1}{-12.0 \, \text{cm}} - \frac{1}{3.0 \, \text{cm}} \][/tex]
Calculating the right-hand side:
[tex]\[ \frac{1}{d_i} = \frac{3.0 - (-12.0)}{3.0 \times (-12.0)} = \frac{3.0 + 12.0}{-36.0} = \frac{15.0}{-36.0} \][/tex]
Simplifying the fraction:
[tex]\[ \frac{15.0}{-36.0} = -\frac{5}{12} \][/tex]
Therefore:
[tex]\[ d_i = -\frac{12}{5} \, \text{cm} = -2.4 \, \text{cm} \][/tex]
So, the distance of the image from the lens is:
[tex]\[ d_i = -2.4 \, \text{cm} \][/tex]
### 2. Finding the height of the image
Next, we need to determine the height of the image ([tex]\( h_i \)[/tex]). The magnification ([tex]\( m \)[/tex]) is given by:
[tex]\[ m = -\frac{d_i}{d_o} \][/tex]
Substituting the known values:
[tex]\[ m = -\frac{-2.4 \, \text{cm}}{3.0 \, \text{cm}} = \frac{2.4}{3.0} = 0.8 \][/tex]
The height of the image is then given by:
[tex]\[ h_i = m \times h_o \][/tex]
Substituting the values for magnification and object height:
[tex]\[ h_i = 0.8 \times 9.0 \, \text{cm} = 7.2 \, \text{cm} \][/tex]
So, the height of the image is:
[tex]\[ h_i = 7.2 \, \text{cm} \][/tex]
### 3. Determining the type of lens
Given that the focal length is negative, we can identify the type of lens. A lens with a negative focal length is a diverging lens.
So, the type of lens is:
[tex]\[ \text{Diverging lens} \][/tex]
### Final Answer
1. The distance of the image from the lens is:
[tex]\[ d_i = -2.4 \, \text{cm} \][/tex]
2. The height of the image is:
[tex]\[ h_i = 7.2 \, \text{cm} \][/tex]
3. The type of lens is:
[tex]\[ \text{Diverging lens} \][/tex]
### 1. Finding the distance of the image from the lens
Given:
- Object height ([tex]\( h_o \)[/tex]) = 9.0 cm
- Object distance ([tex]\( d_o \)[/tex]) = 3.0 cm
- Focal length ([tex]\( f \)[/tex]) = -12.0 cm
We need to find the image distance ([tex]\( d_i \)[/tex]). We can use the lens formula:
[tex]\[ \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \][/tex]
Rearranging to solve for [tex]\( \frac{1}{d_i} \)[/tex]:
[tex]\[ \frac{1}{d_i} = \frac{1}{f} - \frac{1}{d_o} \][/tex]
Substituting the known values:
[tex]\[ \frac{1}{d_i} = \frac{1}{-12.0 \, \text{cm}} - \frac{1}{3.0 \, \text{cm}} \][/tex]
Calculating the right-hand side:
[tex]\[ \frac{1}{d_i} = \frac{3.0 - (-12.0)}{3.0 \times (-12.0)} = \frac{3.0 + 12.0}{-36.0} = \frac{15.0}{-36.0} \][/tex]
Simplifying the fraction:
[tex]\[ \frac{15.0}{-36.0} = -\frac{5}{12} \][/tex]
Therefore:
[tex]\[ d_i = -\frac{12}{5} \, \text{cm} = -2.4 \, \text{cm} \][/tex]
So, the distance of the image from the lens is:
[tex]\[ d_i = -2.4 \, \text{cm} \][/tex]
### 2. Finding the height of the image
Next, we need to determine the height of the image ([tex]\( h_i \)[/tex]). The magnification ([tex]\( m \)[/tex]) is given by:
[tex]\[ m = -\frac{d_i}{d_o} \][/tex]
Substituting the known values:
[tex]\[ m = -\frac{-2.4 \, \text{cm}}{3.0 \, \text{cm}} = \frac{2.4}{3.0} = 0.8 \][/tex]
The height of the image is then given by:
[tex]\[ h_i = m \times h_o \][/tex]
Substituting the values for magnification and object height:
[tex]\[ h_i = 0.8 \times 9.0 \, \text{cm} = 7.2 \, \text{cm} \][/tex]
So, the height of the image is:
[tex]\[ h_i = 7.2 \, \text{cm} \][/tex]
### 3. Determining the type of lens
Given that the focal length is negative, we can identify the type of lens. A lens with a negative focal length is a diverging lens.
So, the type of lens is:
[tex]\[ \text{Diverging lens} \][/tex]
### Final Answer
1. The distance of the image from the lens is:
[tex]\[ d_i = -2.4 \, \text{cm} \][/tex]
2. The height of the image is:
[tex]\[ h_i = 7.2 \, \text{cm} \][/tex]
3. The type of lens is:
[tex]\[ \text{Diverging lens} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.