Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Using the values from Step 1, predict the pattern for the decay of 100 atoms over the course of eight half-life cycles. Round to the nearest whole number of atoms. Record in the appropriate blanks.

[tex]$A=$[/tex] [tex]$\square$[/tex]
[tex]$B=$[/tex] [tex]$\square$[/tex]
[tex]$C=$[/tex] [tex]$\square$[/tex]
[tex]$D=$[/tex] [tex]$\square$[/tex]

\begin{tabular}{|c|c|c|}
\hline
\begin{tabular}{c}
Time-Half- \\
Life Cycles, [tex]$n$[/tex]
\end{tabular} & [tex]$0.5^n$[/tex] & \begin{tabular}{c}
Radioactive Atoms \\
(Predicted)
\end{tabular} \\
\hline Initial & 1 & 100 \\
\hline 1 & 0.5 & [tex]$A$[/tex] \\
\hline 2 & 0.25 & 25 \\
\hline 3 & 0.125 & [tex]$B$[/tex] \\
\hline 4 & 0.0625 & 6 \\
\hline 5 & 0.03125 & [tex]$C$[/tex] \\
\hline 6 & 0.015625 & [tex]$D$[/tex] \\
\hline 7 & 0.0078125 & 1 \\
\hline 8 & 0.00390625 & \\
\hline
\end{tabular}


Sagot :

To predict the pattern for the decay of 100 atoms over the course of eight half-life cycles and fill in the table, follow these steps:

1. Understand the Half-Life Process: Every half-life cycle, the number of atoms is reduced by half.

2. Calculate the Number of Atoms Remaining After Each Half-Life: Use the formula:
[tex]\[ \text{Remaining Atoms} = 100 \times (0.5)^n \][/tex]
where [tex]\( n \)[/tex] is the number of half-life cycles.

Let's fill in the values step-by-step and record the remaining atoms rounded to the nearest whole number:

- Initial (0 half-life cycles):
[tex]\[ \text{Remaining Atoms} = 100 \times (0.5)^0 = 100 \][/tex]
- After 1 half-life cycle (n = 1):
[tex]\[ \text{Remaining Atoms} = 100 \times (0.5)^1 = 50 \][/tex]
So, [tex]\( A = 50 \)[/tex].
- After 2 half-life cycles (n = 2):
[tex]\[ \text{Remaining Atoms} = 100 \times (0.5)^2 = 25 \][/tex]
(Already given in the table)
- After 3 half-life cycles (n = 3):
[tex]\[ \text{Remaining Atoms} = 100 \times (0.5)^3 = 12.5 \][/tex]
Round 12.5 to the nearest whole number:
[tex]\[ B = 12 \][/tex]
- After 4 half-life cycles (n = 4):
[tex]\[ \text{Remaining Atoms} = 100 \times (0.5)^4 = 6.25 \][/tex]
(Already given in the table)
- After 5 half-life cycles (n = 5):
[tex]\[ \text{Remaining Atoms} = 100 \times (0.5)^5 = 3.125 \][/tex]
Round 3.125 to the nearest whole number:
[tex]\[ C = 3 \][/tex]
- After 6 half-life cycles (n = 6):
[tex]\[ \text{Remaining Atoms} = 100 \times (0.5)^6 = 1.5625 \][/tex]
Round 1.5625 to the nearest whole number:
[tex]\[ D = 2 \][/tex]
- After 7 half-life cycles (n = 7):
[tex]\[ \text{Remaining Atoms} = 100 \times (0.5)^7 = 0.78125 \][/tex]
Round 0.78125 to the nearest whole number:
(Already given in the table as 1)
- After 8 half-life cycles (n = 8):
[tex]\[ \text{Remaining Atoms} = 100 \times (0.5)^8 = 0.390625 \][/tex]
Round 0.390625 to the nearest whole number:
[tex]\[ E = 0 \][/tex]

Now, we complete the table:
[tex]\[ \begin{tabular}{|c|c|c|} \hline \begin{tabular}{c} Time-Half- \\ Life Cycles, $n$ \end{tabular} & $0.5^{\boldsymbol{n}}$ & \begin{tabular}{c} Radioactive Atoms \\ (Predicted) \end{tabular} \\ \hline Initial & 1 & 100 \\ \hline 1 & 0.5 & 50 \\ \hline 2 & 0.25 & 25 \\ \hline 3 & 0.125 & 12 \\ \hline 4 & 0.0625 & 6 \\ \hline 5 & 0.03125 & 3 \\ \hline 6 & 0.015625 & 2 \\ \hline 7 & 0.0078125 & 1 \\ \hline 8 & 0.00390625 & 0 \\ \hline \end{tabular} \][/tex]

Therefore, the values are:
[tex]\[ A = 50 \][/tex]
[tex]\[ B = 12 \][/tex]
[tex]\[ C = 3 \][/tex]
[tex]\[ D = 2 \][/tex]
[tex]\[ E = 0 \][/tex]