Answered

Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

If we apply Rolle's Theorem to the function [tex]f(x)=2x^2-16x-1[/tex] on the interval [tex][2,6][/tex], how many values of [tex]c[/tex] exist such that [tex]f^{\prime}(c)=0[/tex]?

What is the value of [tex]c[/tex]?
[tex]\square[/tex]


Sagot :

To address the problem, we'll apply Rolle's Theorem to the function [tex]\( f(x) = 2x^2 - 16x - 1 \)[/tex] over the interval [tex]\([2, 6]\)[/tex]. Let's work through it step by step.

### Step 1: Verify the Conditions for Rolle's Theorem
Rolle's Theorem states that if a function [tex]\( f \)[/tex] is:
1. Continuous on a closed interval [tex]\([a, b]\)[/tex],
2. Differentiable on the open interval [tex]\((a, b)\)[/tex],
3. And [tex]\( f(a) = f(b) \)[/tex],

then there exists at least one [tex]\( c \)[/tex] in the interval [tex]\((a, b)\)[/tex] such that [tex]\( f'(c) = 0 \)[/tex].

First, we check that [tex]\( f(x) \)[/tex] is a polynomial, which is continuous and differentiable everywhere. Thus, conditions 1 and 2 are satisfied.

Next, we check if [tex]\( f(2) = f(6) \)[/tex]:
[tex]\[ f(2) = 2(2)^2 - 16(2) - 1 = 8 - 32 - 1 = -25 \][/tex]
[tex]\[ f(6) = 2(6)^2 - 16(6) - 1 = 72 - 96 - 1 = -25 \][/tex]
Since [tex]\( f(2) = f(6) = -25 \)[/tex], condition 3 is also met. Therefore, all conditions for Rolle's Theorem are satisfied.

### Step 2: Find the Derivative of [tex]\( f(x) \)[/tex]
Now, we need to find the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} (2x^2 - 16x - 1) = 4x - 16 \][/tex]

### Step 3: Find the Critical Points
Set the derivative equal to zero to find the critical points:
[tex]\[ 4x - 16 = 0 \][/tex]
[tex]\[ 4x = 16 \][/tex]
[tex]\[ x = 4 \][/tex]

### Step 4: Verify the Critical Point is Within the Interval
The critical point [tex]\( x = 4 \)[/tex] lies within the interval [tex]\([2, 6]\)[/tex]. Therefore, this is a valid value for [tex]\( c \)[/tex].

### Conclusion
There is exactly one value of [tex]\( c \)[/tex] such that [tex]\( f'(c) = 0 \)[/tex] within the interval [tex]\([2, 6]\)[/tex], and the value of [tex]\( c \)[/tex] is [tex]\( 4 \)[/tex].

Summary:
- Number of [tex]\( c \)[/tex] values: [tex]\( \boxed{1} \)[/tex]
- Value of [tex]\( c \)[/tex]: [tex]\( \boxed{4} \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.