Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To address the problem, we'll apply Rolle's Theorem to the function [tex]\( f(x) = 2x^2 - 16x - 1 \)[/tex] over the interval [tex]\([2, 6]\)[/tex]. Let's work through it step by step.
### Step 1: Verify the Conditions for Rolle's Theorem
Rolle's Theorem states that if a function [tex]\( f \)[/tex] is:
1. Continuous on a closed interval [tex]\([a, b]\)[/tex],
2. Differentiable on the open interval [tex]\((a, b)\)[/tex],
3. And [tex]\( f(a) = f(b) \)[/tex],
then there exists at least one [tex]\( c \)[/tex] in the interval [tex]\((a, b)\)[/tex] such that [tex]\( f'(c) = 0 \)[/tex].
First, we check that [tex]\( f(x) \)[/tex] is a polynomial, which is continuous and differentiable everywhere. Thus, conditions 1 and 2 are satisfied.
Next, we check if [tex]\( f(2) = f(6) \)[/tex]:
[tex]\[ f(2) = 2(2)^2 - 16(2) - 1 = 8 - 32 - 1 = -25 \][/tex]
[tex]\[ f(6) = 2(6)^2 - 16(6) - 1 = 72 - 96 - 1 = -25 \][/tex]
Since [tex]\( f(2) = f(6) = -25 \)[/tex], condition 3 is also met. Therefore, all conditions for Rolle's Theorem are satisfied.
### Step 2: Find the Derivative of [tex]\( f(x) \)[/tex]
Now, we need to find the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} (2x^2 - 16x - 1) = 4x - 16 \][/tex]
### Step 3: Find the Critical Points
Set the derivative equal to zero to find the critical points:
[tex]\[ 4x - 16 = 0 \][/tex]
[tex]\[ 4x = 16 \][/tex]
[tex]\[ x = 4 \][/tex]
### Step 4: Verify the Critical Point is Within the Interval
The critical point [tex]\( x = 4 \)[/tex] lies within the interval [tex]\([2, 6]\)[/tex]. Therefore, this is a valid value for [tex]\( c \)[/tex].
### Conclusion
There is exactly one value of [tex]\( c \)[/tex] such that [tex]\( f'(c) = 0 \)[/tex] within the interval [tex]\([2, 6]\)[/tex], and the value of [tex]\( c \)[/tex] is [tex]\( 4 \)[/tex].
Summary:
- Number of [tex]\( c \)[/tex] values: [tex]\( \boxed{1} \)[/tex]
- Value of [tex]\( c \)[/tex]: [tex]\( \boxed{4} \)[/tex]
### Step 1: Verify the Conditions for Rolle's Theorem
Rolle's Theorem states that if a function [tex]\( f \)[/tex] is:
1. Continuous on a closed interval [tex]\([a, b]\)[/tex],
2. Differentiable on the open interval [tex]\((a, b)\)[/tex],
3. And [tex]\( f(a) = f(b) \)[/tex],
then there exists at least one [tex]\( c \)[/tex] in the interval [tex]\((a, b)\)[/tex] such that [tex]\( f'(c) = 0 \)[/tex].
First, we check that [tex]\( f(x) \)[/tex] is a polynomial, which is continuous and differentiable everywhere. Thus, conditions 1 and 2 are satisfied.
Next, we check if [tex]\( f(2) = f(6) \)[/tex]:
[tex]\[ f(2) = 2(2)^2 - 16(2) - 1 = 8 - 32 - 1 = -25 \][/tex]
[tex]\[ f(6) = 2(6)^2 - 16(6) - 1 = 72 - 96 - 1 = -25 \][/tex]
Since [tex]\( f(2) = f(6) = -25 \)[/tex], condition 3 is also met. Therefore, all conditions for Rolle's Theorem are satisfied.
### Step 2: Find the Derivative of [tex]\( f(x) \)[/tex]
Now, we need to find the derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} (2x^2 - 16x - 1) = 4x - 16 \][/tex]
### Step 3: Find the Critical Points
Set the derivative equal to zero to find the critical points:
[tex]\[ 4x - 16 = 0 \][/tex]
[tex]\[ 4x = 16 \][/tex]
[tex]\[ x = 4 \][/tex]
### Step 4: Verify the Critical Point is Within the Interval
The critical point [tex]\( x = 4 \)[/tex] lies within the interval [tex]\([2, 6]\)[/tex]. Therefore, this is a valid value for [tex]\( c \)[/tex].
### Conclusion
There is exactly one value of [tex]\( c \)[/tex] such that [tex]\( f'(c) = 0 \)[/tex] within the interval [tex]\([2, 6]\)[/tex], and the value of [tex]\( c \)[/tex] is [tex]\( 4 \)[/tex].
Summary:
- Number of [tex]\( c \)[/tex] values: [tex]\( \boxed{1} \)[/tex]
- Value of [tex]\( c \)[/tex]: [tex]\( \boxed{4} \)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.