Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the equation [tex]\(x + 5 = -3^x + 4\)[/tex], we will proceed through several steps. The aim is to isolate [tex]\(x\)[/tex] and find its value.
1. Rewrite the Equation:
[tex]\[ x + 5 = -3^x + 4 \][/tex]
2. Simplify the Equation:
Let's get all terms involving [tex]\(x\)[/tex] on one side and constant terms on the other side:
[tex]\[ x + 5 - 4 = -3^x \][/tex]
This simplifies to:
[tex]\[ x + 1 = -3^x \][/tex]
3. Isolate the Exponential Term:
[tex]\[ x + 1 = -3^x \][/tex]
4. Introduce the Lambert W Function:
The Lambert W function, [tex]\(W(z)\)[/tex], is defined as the inverse function of [tex]\( f(W) = W e^W \)[/tex], meaning [tex]\( W e^W = z \)[/tex].
Here, we rewrite the equation to apply the Lambert W function:
[tex]\[ x + 1 = -3^x \][/tex]
We know that solving equations involving variables both inside and outside of an exponential function typically involves the Lambert W function. We recognize that this equation can't be simplified by elementary algebraic methods alone.
5. Express the Solution Using Lambert W:
By transforming and adapting our equation to fit the Lambert W function form, we find that:
[tex]\[ x + 1 = -3^x \][/tex]
Transitions into a form involving Lambert W, leading us to a solution that can be represented by:
[tex]\[ x = -1 - \frac{W(\log(3)/3)}{\log(3)} \][/tex]
Hence, the solution to the equation [tex]\( x + 5 = -3^x + 4 \)[/tex] is:
[tex]\[ x = -1 - \frac{W(\log(3)/3)}{\log(3)} \][/tex]
This expression represents the value of [tex]\(x\)[/tex] in terms of the Lambert W function, accurately capturing the solution for the given equation.
1. Rewrite the Equation:
[tex]\[ x + 5 = -3^x + 4 \][/tex]
2. Simplify the Equation:
Let's get all terms involving [tex]\(x\)[/tex] on one side and constant terms on the other side:
[tex]\[ x + 5 - 4 = -3^x \][/tex]
This simplifies to:
[tex]\[ x + 1 = -3^x \][/tex]
3. Isolate the Exponential Term:
[tex]\[ x + 1 = -3^x \][/tex]
4. Introduce the Lambert W Function:
The Lambert W function, [tex]\(W(z)\)[/tex], is defined as the inverse function of [tex]\( f(W) = W e^W \)[/tex], meaning [tex]\( W e^W = z \)[/tex].
Here, we rewrite the equation to apply the Lambert W function:
[tex]\[ x + 1 = -3^x \][/tex]
We know that solving equations involving variables both inside and outside of an exponential function typically involves the Lambert W function. We recognize that this equation can't be simplified by elementary algebraic methods alone.
5. Express the Solution Using Lambert W:
By transforming and adapting our equation to fit the Lambert W function form, we find that:
[tex]\[ x + 1 = -3^x \][/tex]
Transitions into a form involving Lambert W, leading us to a solution that can be represented by:
[tex]\[ x = -1 - \frac{W(\log(3)/3)}{\log(3)} \][/tex]
Hence, the solution to the equation [tex]\( x + 5 = -3^x + 4 \)[/tex] is:
[tex]\[ x = -1 - \frac{W(\log(3)/3)}{\log(3)} \][/tex]
This expression represents the value of [tex]\(x\)[/tex] in terms of the Lambert W function, accurately capturing the solution for the given equation.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.