Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

If [tex]g(x) = 4x^2 - 16[/tex] were shifted 9 units to the right and 1 unit down, what would the new equation be?

A. [tex]h(x) = 4(x - 17)^2 - 9[/tex]
B. [tex]h(x) = 4(x - 7)^2 + 16[/tex]
C. [tex]h(x) = 4(x - 9)^2 - 17[/tex]
D. [tex]h(x) = 4(x + 9)^2 - 17[/tex]


Sagot :

Sure, let's solve this step by step.

We start with the given function:
[tex]\[ g(x) = 4x^2 - 16 \][/tex]

Our objective is to perform two transformations on [tex]\( g(x) \)[/tex]:
1. Shift it 9 units to the right.
2. Shift it 1 unit down.

Step 1: Shifting 9 units to the right

To shift the graph of a function [tex]\( g(x) \)[/tex] horizontally to the right by [tex]\( c \)[/tex] units, we replace [tex]\( x \)[/tex] with [tex]\( x - c \)[/tex]. Here, [tex]\( c = 9 \)[/tex], so we replace [tex]\( x \)[/tex] with [tex]\( x - 9 \)[/tex]:

[tex]\[ g(x - 9) = 4(x - 9)^2 - 16 \][/tex]

Step 2: Shifting 1 unit down

To shift the graph of a function vertically downward by [tex]\( c \)[/tex] units, we subtract [tex]\( c \)[/tex] from the entire function. Here, [tex]\( c = 1 \)[/tex], so we subtract 1 from [tex]\( g(x - 9) \)[/tex]:

[tex]\[ h(x) = 4(x - 9)^2 - 16 - 1 \][/tex]

Simplifying the expression:

[tex]\[ h(x) = 4(x - 9)^2 - 17 \][/tex]

Thus, the new equation after the shifts is:

[tex]\[ h(x) = 4(x - 9)^2 - 17 \][/tex]

Comparing this with the given options, the correct answer is:

C. [tex]\( h(x) = 4(x - 9)^2 - 17 \)[/tex]