Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Find the product: [tex]\((n-6)(3n-6)\)[/tex].

A. [tex]\(3n^2 - 12n - 36\)[/tex]

B. [tex]\(3n^2 - 24n + 36\)[/tex]

C. [tex]\(3n^2 + 24n - 36\)[/tex]

D. [tex]\(3n^2 + 12n + 36\)[/tex]


Sagot :

To find the product [tex]\((n - 6)(3n - 6)\)[/tex], we can use the distributive property of multiplication over addition, also known as the FOIL method (First, Outside, Inside, Last). Let's break this down step by step:

First, let's write down the expression:
[tex]\[ (n - 6)(3n - 6) \][/tex]

1. First: Multiply the first terms in each binomial:
[tex]\[ n \cdot 3n = 3n^2 \][/tex]

2. Outside: Multiply the outside terms:
[tex]\[ n \cdot (-6) = -6n \][/tex]

3. Inside: Multiply the inside terms:
[tex]\[ -6 \cdot 3n = -18n \][/tex]

4. Last: Multiply the last terms in each binomial:
[tex]\[ -6 \cdot (-6) = 36 \][/tex]

Next, we add all these results together:
[tex]\[ 3n^2 - 6n - 18n + 36 \][/tex]

Combine like terms (the terms with [tex]\(n\)[/tex]):
[tex]\[ 3n^2 - 24n + 36 \][/tex]

Therefore, the product of [tex]\((n - 6)(3n - 6)\)[/tex] is:
[tex]\[ 3n^2 - 24n + 36 \][/tex]

So, the correct answer is:
[tex]\[ 3n^2 - 24n + 36 \][/tex]

This matches option 2. Thus, the correct choice is:
[tex]\[ \boxed{3n^2 - 24n + 36} \][/tex]