Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the inverse of the function [tex]\( h(x) = \frac{3}{4} x + 12 \)[/tex], we follow these steps:
1. Rewrite the function using [tex]\( y \)[/tex] to denote the output:
[tex]\[ y = \frac{3}{4} x + 12 \][/tex]
2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
- First, we isolate [tex]\( x \)[/tex]. Start by subtracting 12 from both sides of the equation:
[tex]\[ y - 12 = \frac{3}{4} x \][/tex]
- Next, to solve for [tex]\( x \)[/tex], we need to eliminate the fraction. Multiply both sides of the equation by the reciprocal of [tex]\( \frac{3}{4} \)[/tex], which is [tex]\( \frac{4}{3} \)[/tex]:
[tex]\[ x = \frac{4}{3} (y - 12) \][/tex]
3. Express the inverse function [tex]\( h^{-1}(x) \)[/tex]:
- We replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to represent the input variable of the inverse function:
[tex]\[ h^{-1}(x) = \frac{4}{3} (x - 12) \][/tex]
Thus, the inverse of the function [tex]\( h(x) \)[/tex] is:
[tex]\[ h^{-1}(x) = \frac{4}{3} (x - 12) \][/tex]
1. Rewrite the function using [tex]\( y \)[/tex] to denote the output:
[tex]\[ y = \frac{3}{4} x + 12 \][/tex]
2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
- First, we isolate [tex]\( x \)[/tex]. Start by subtracting 12 from both sides of the equation:
[tex]\[ y - 12 = \frac{3}{4} x \][/tex]
- Next, to solve for [tex]\( x \)[/tex], we need to eliminate the fraction. Multiply both sides of the equation by the reciprocal of [tex]\( \frac{3}{4} \)[/tex], which is [tex]\( \frac{4}{3} \)[/tex]:
[tex]\[ x = \frac{4}{3} (y - 12) \][/tex]
3. Express the inverse function [tex]\( h^{-1}(x) \)[/tex]:
- We replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] to represent the input variable of the inverse function:
[tex]\[ h^{-1}(x) = \frac{4}{3} (x - 12) \][/tex]
Thus, the inverse of the function [tex]\( h(x) \)[/tex] is:
[tex]\[ h^{-1}(x) = \frac{4}{3} (x - 12) \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.