Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the electromagnetic force between the two particles, we'll use Coulomb's law, which is given by the formula:
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where:
- [tex]\(k\)[/tex] is Coulomb's constant, [tex]\(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2\)[/tex],
- [tex]\(q_1\)[/tex] and [tex]\(q_2\)[/tex] are the charges of the particles,
- [tex]\(r\)[/tex] is the separation distance between the charges.
Given data:
- [tex]\( q_1 = -1.87 \times 10^{-9} \, \text{C} \)[/tex]
- [tex]\( q_2 = -1.10 \times 10^{-9} \, \text{C} \)[/tex]
- [tex]\( r = 0.05 \, \text{m} \)[/tex]
Now substitute these values into the formula:
[tex]\[ F_e = \frac{(9.00 \times 10^9) \times (-1.87 \times 10^{-9}) \times (-1.10 \times 10^{-9})}{(0.05)^2} \][/tex]
First, calculate the numerator:
[tex]\[ (9.00 \times 10^9) \times (-1.87 \times 10^{-9}) \times (-1.10 \times 10^{-9}) \][/tex]
The product of the charges ([tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]) will be positive because multiplying two negative numbers yields a positive result. Simplifying this, we get:
[tex]\[ (9.00 \times 10^9) \times (1.87 \times 10^{-9}) \times (1.10 \times 10^{-9}) = 9.00 \times 1.87 \times 1.10 \times 10^9 \times 10^{-9} \times 10^{-9} \][/tex]
[tex]\[ = 9.00 \times 1.87 \times 1.10 \times 10^{-9} \][/tex]
Next, calculate the denominator:
[tex]\[ (0.05)^2 = 0.0025 \][/tex]
Now substitute these into the expression for [tex]\( F_e \)[/tex]:
[tex]\[ F_e = \frac{9.00 \times 1.87 \times 1.10 \times 10^{-9}}{0.0025} \][/tex]
Calculate the values:
[tex]\[ 9.00 \times 1.87 = 16.83 \][/tex]
[tex]\[ 16.83 \times 1.10 = 18.513 \][/tex]
[tex]\[ F_e = \frac{18.513 \times 10^{-9}}{0.0025} \][/tex]
[tex]\[ F_e = 18.513 \times 10^{-9} \times \frac{1}{0.0025} \][/tex]
[tex]\[ F_e = 18.513 \times 10^{-9} \times 400 \][/tex]
[tex]\[ F_e = 7.4052 \times 10^{-6} \, \text{N} \][/tex]
Therefore, the electromagnetic force between the two particles is:
[tex]\[ \boxed{7.41 \times 10^{-6} \, \text{N}} \][/tex]
So the correct answer is:
C) [tex]\(7.41 \times 10^{-6} \, \text{N}\)[/tex]
[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]
where:
- [tex]\(k\)[/tex] is Coulomb's constant, [tex]\(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2\)[/tex],
- [tex]\(q_1\)[/tex] and [tex]\(q_2\)[/tex] are the charges of the particles,
- [tex]\(r\)[/tex] is the separation distance between the charges.
Given data:
- [tex]\( q_1 = -1.87 \times 10^{-9} \, \text{C} \)[/tex]
- [tex]\( q_2 = -1.10 \times 10^{-9} \, \text{C} \)[/tex]
- [tex]\( r = 0.05 \, \text{m} \)[/tex]
Now substitute these values into the formula:
[tex]\[ F_e = \frac{(9.00 \times 10^9) \times (-1.87 \times 10^{-9}) \times (-1.10 \times 10^{-9})}{(0.05)^2} \][/tex]
First, calculate the numerator:
[tex]\[ (9.00 \times 10^9) \times (-1.87 \times 10^{-9}) \times (-1.10 \times 10^{-9}) \][/tex]
The product of the charges ([tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]) will be positive because multiplying two negative numbers yields a positive result. Simplifying this, we get:
[tex]\[ (9.00 \times 10^9) \times (1.87 \times 10^{-9}) \times (1.10 \times 10^{-9}) = 9.00 \times 1.87 \times 1.10 \times 10^9 \times 10^{-9} \times 10^{-9} \][/tex]
[tex]\[ = 9.00 \times 1.87 \times 1.10 \times 10^{-9} \][/tex]
Next, calculate the denominator:
[tex]\[ (0.05)^2 = 0.0025 \][/tex]
Now substitute these into the expression for [tex]\( F_e \)[/tex]:
[tex]\[ F_e = \frac{9.00 \times 1.87 \times 1.10 \times 10^{-9}}{0.0025} \][/tex]
Calculate the values:
[tex]\[ 9.00 \times 1.87 = 16.83 \][/tex]
[tex]\[ 16.83 \times 1.10 = 18.513 \][/tex]
[tex]\[ F_e = \frac{18.513 \times 10^{-9}}{0.0025} \][/tex]
[tex]\[ F_e = 18.513 \times 10^{-9} \times \frac{1}{0.0025} \][/tex]
[tex]\[ F_e = 18.513 \times 10^{-9} \times 400 \][/tex]
[tex]\[ F_e = 7.4052 \times 10^{-6} \, \text{N} \][/tex]
Therefore, the electromagnetic force between the two particles is:
[tex]\[ \boxed{7.41 \times 10^{-6} \, \text{N}} \][/tex]
So the correct answer is:
C) [tex]\(7.41 \times 10^{-6} \, \text{N}\)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.