Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

One particle has a charge of [tex]-1.87 \times 10^{-9} \, C[/tex], while another particle has a charge of [tex]-1.10 \times 10^{-9} \, C[/tex]. If the two particles are separated by 0.05 m, what is the electromagnetic force between them?

The equation for Coulomb's law is [tex]F_e = \frac{k q_1 q_2}{r^2}[/tex], and the constant, [tex]k[/tex], equals [tex]9.00 \times 10^9 \, N \cdot m^2 / C^2[/tex].

A. [tex]-7.41 \times 10^{-6} \, N[/tex]
B. [tex]-3.70 \times 10^{-7} \, N[/tex]
C. [tex]7.41 \times 10^{-6} \, N[/tex]
D. [tex]3.70 \times 10^{-7} \, N[/tex]


Sagot :

To find the electromagnetic force between the two particles, we'll use Coulomb's law, which is given by the formula:

[tex]\[ F_e = \frac{k q_1 q_2}{r^2} \][/tex]

where:
- [tex]\(k\)[/tex] is Coulomb's constant, [tex]\(9.00 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2\)[/tex],
- [tex]\(q_1\)[/tex] and [tex]\(q_2\)[/tex] are the charges of the particles,
- [tex]\(r\)[/tex] is the separation distance between the charges.

Given data:
- [tex]\( q_1 = -1.87 \times 10^{-9} \, \text{C} \)[/tex]
- [tex]\( q_2 = -1.10 \times 10^{-9} \, \text{C} \)[/tex]
- [tex]\( r = 0.05 \, \text{m} \)[/tex]

Now substitute these values into the formula:

[tex]\[ F_e = \frac{(9.00 \times 10^9) \times (-1.87 \times 10^{-9}) \times (-1.10 \times 10^{-9})}{(0.05)^2} \][/tex]

First, calculate the numerator:

[tex]\[ (9.00 \times 10^9) \times (-1.87 \times 10^{-9}) \times (-1.10 \times 10^{-9}) \][/tex]

The product of the charges ([tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]) will be positive because multiplying two negative numbers yields a positive result. Simplifying this, we get:

[tex]\[ (9.00 \times 10^9) \times (1.87 \times 10^{-9}) \times (1.10 \times 10^{-9}) = 9.00 \times 1.87 \times 1.10 \times 10^9 \times 10^{-9} \times 10^{-9} \][/tex]

[tex]\[ = 9.00 \times 1.87 \times 1.10 \times 10^{-9} \][/tex]

Next, calculate the denominator:

[tex]\[ (0.05)^2 = 0.0025 \][/tex]

Now substitute these into the expression for [tex]\( F_e \)[/tex]:

[tex]\[ F_e = \frac{9.00 \times 1.87 \times 1.10 \times 10^{-9}}{0.0025} \][/tex]

Calculate the values:

[tex]\[ 9.00 \times 1.87 = 16.83 \][/tex]

[tex]\[ 16.83 \times 1.10 = 18.513 \][/tex]

[tex]\[ F_e = \frac{18.513 \times 10^{-9}}{0.0025} \][/tex]

[tex]\[ F_e = 18.513 \times 10^{-9} \times \frac{1}{0.0025} \][/tex]

[tex]\[ F_e = 18.513 \times 10^{-9} \times 400 \][/tex]

[tex]\[ F_e = 7.4052 \times 10^{-6} \, \text{N} \][/tex]

Therefore, the electromagnetic force between the two particles is:

[tex]\[ \boxed{7.41 \times 10^{-6} \, \text{N}} \][/tex]

So the correct answer is:

C) [tex]\(7.41 \times 10^{-6} \, \text{N}\)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.