Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the scenario with the least gravitational force between two objects, we will utilize the formula for gravitational force:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant, [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects, and [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Let's go through each scenario step-by-step:
### Scenario A:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 12 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 1.5 m
Gravitational force equation:
[tex]\[ F_A = G \frac{12 \times 12}{(1.5)^2} \][/tex]
[tex]\[ F_A = G \frac{144}{2.25} \][/tex]
[tex]\[ F_A = 64 G \][/tex]
Numerically, this gives:
[tex]\[ F_A = 4.271552 \times 10^{-9} \, \text{N} \][/tex]
### Scenario B:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 15 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 1.5 m
Gravitational force equation:
[tex]\[ F_B = G \frac{15 \times 12}{(1.5)^2} \][/tex]
[tex]\[ F_B = G \frac{180}{2.25} \][/tex]
[tex]\[ F_B = 80 G \][/tex]
Numerically, this gives:
[tex]\[ F_B = 5.339440 \times 10^{-9} \, \text{N} \][/tex]
### Scenario C:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 15 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 0.5 m
Gravitational force equation:
[tex]\[ F_C = G \frac{15 \times 12}{(0.5)^2} \][/tex]
[tex]\[ F_C = G \frac{180}{0.25} \][/tex]
[tex]\[ F_C = 720 G \][/tex]
Numerically, this gives:
[tex]\[ F_C = 48.05496 \times 10^{-9} \, \text{N} \][/tex]
### Scenario D:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 12 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 0.5 m
Gravitational force equation:
[tex]\[ F_D = G \frac{12 \times 12}{(0.5)^2} \][/tex]
[tex]\[ F_D = G \frac{144}{0.25} \][/tex]
[tex]\[ F_D = 576 G \][/tex]
Numerically, this gives:
[tex]\[ F_D = 38.443968 \times 10^{-9} \, \text{N} \][/tex]
### Conclusion:
Comparing the calculated forces:
- [tex]\( F_A = 4.271552 \times 10^{-9} \, \text{N} \)[/tex]
- [tex]\( F_B = 5.339440 \times 10^{-9} \, \text{N} \)[/tex]
- [tex]\( F_C = 48.05496 \times 10^{-9} \, \text{N} \)[/tex]
- [tex]\( F_D = 38.443968 \times 10^{-9} \, \text{N} \)[/tex]
The smallest force is [tex]\( F_A = 4.271552 \times 10^{-9} \, \text{N} \)[/tex], which occurs in Scenario A.
Thus, the scenario with the least gravitational force between the objects is Scenario A.
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where [tex]\( G \)[/tex] is the gravitational constant, [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two objects, and [tex]\( r \)[/tex] is the distance between the centers of the two masses.
Let's go through each scenario step-by-step:
### Scenario A:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 12 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 1.5 m
Gravitational force equation:
[tex]\[ F_A = G \frac{12 \times 12}{(1.5)^2} \][/tex]
[tex]\[ F_A = G \frac{144}{2.25} \][/tex]
[tex]\[ F_A = 64 G \][/tex]
Numerically, this gives:
[tex]\[ F_A = 4.271552 \times 10^{-9} \, \text{N} \][/tex]
### Scenario B:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 15 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 1.5 m
Gravitational force equation:
[tex]\[ F_B = G \frac{15 \times 12}{(1.5)^2} \][/tex]
[tex]\[ F_B = G \frac{180}{2.25} \][/tex]
[tex]\[ F_B = 80 G \][/tex]
Numerically, this gives:
[tex]\[ F_B = 5.339440 \times 10^{-9} \, \text{N} \][/tex]
### Scenario C:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 15 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 0.5 m
Gravitational force equation:
[tex]\[ F_C = G \frac{15 \times 12}{(0.5)^2} \][/tex]
[tex]\[ F_C = G \frac{180}{0.25} \][/tex]
[tex]\[ F_C = 720 G \][/tex]
Numerically, this gives:
[tex]\[ F_C = 48.05496 \times 10^{-9} \, \text{N} \][/tex]
### Scenario D:
- Mass of object 1 ([tex]\( m_1 \)[/tex]): 12 kg
- Mass of object 2 ([tex]\( m_2 \)[/tex]): 12 kg
- Distance ([tex]\( r \)[/tex]): 0.5 m
Gravitational force equation:
[tex]\[ F_D = G \frac{12 \times 12}{(0.5)^2} \][/tex]
[tex]\[ F_D = G \frac{144}{0.25} \][/tex]
[tex]\[ F_D = 576 G \][/tex]
Numerically, this gives:
[tex]\[ F_D = 38.443968 \times 10^{-9} \, \text{N} \][/tex]
### Conclusion:
Comparing the calculated forces:
- [tex]\( F_A = 4.271552 \times 10^{-9} \, \text{N} \)[/tex]
- [tex]\( F_B = 5.339440 \times 10^{-9} \, \text{N} \)[/tex]
- [tex]\( F_C = 48.05496 \times 10^{-9} \, \text{N} \)[/tex]
- [tex]\( F_D = 38.443968 \times 10^{-9} \, \text{N} \)[/tex]
The smallest force is [tex]\( F_A = 4.271552 \times 10^{-9} \, \text{N} \)[/tex], which occurs in Scenario A.
Thus, the scenario with the least gravitational force between the objects is Scenario A.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.