Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the value of [tex]\(\tan 45^{\circ}\)[/tex], we can start by recalling some fundamental trigonometric concepts. The tangent function, [tex]\(\tan \theta\)[/tex], is defined as the ratio of the sine of an angle to the cosine of that angle:
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
We will specifically evaluate this at [tex]\(\theta = 45^{\circ}\)[/tex].
Let's consider the angle [tex]\(45^{\circ}\)[/tex]:
1. In a right triangle where one of the angles is [tex]\(45^{\circ}\)[/tex], the other non-right angle is also [tex]\(45^{\circ}\)[/tex], making it an isosceles right triangle.
2. Thus, the two legs opposite these angles are equal in length. For simplicity, let's assume each leg has a length of 1 unit.
3. Using the Pythagorean theorem [tex]\(a^2 + b^2 = c^2\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are the legs of the triangle and [tex]\(c\)[/tex] is the hypotenuse, we can calculate the hypotenuse as follows:
[tex]\[ 1^2 + 1^2 = c^2 \implies 1 + 1 = c^2 \implies c^2 = 2 \implies c = \sqrt{2} \][/tex]
Given that the triangle is isosceles with legs of 1 unit each, and the hypotenuse is [tex]\(\sqrt{2}\)[/tex], we can find the sine and cosine of [tex]\(45^{\circ}\)[/tex]:
[tex]\[ \sin 45^{\circ} = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{1}{\sqrt{2}} \][/tex]
[tex]\[ \cos 45^{\circ} = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{1}{\sqrt{2}} \][/tex]
Substituting these values into the tangent function:
[tex]\[ \tan 45^{\circ} = \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = 1 \][/tex]
Thus, the value of [tex]\(\tan 45^{\circ}\)[/tex] is:
[tex]\[ \tan 45^{\circ} = 1 \][/tex]
Therefore, the correct answer is:
B. 1
[tex]\[ \tan \theta = \frac{\sin \theta}{\cos \theta} \][/tex]
We will specifically evaluate this at [tex]\(\theta = 45^{\circ}\)[/tex].
Let's consider the angle [tex]\(45^{\circ}\)[/tex]:
1. In a right triangle where one of the angles is [tex]\(45^{\circ}\)[/tex], the other non-right angle is also [tex]\(45^{\circ}\)[/tex], making it an isosceles right triangle.
2. Thus, the two legs opposite these angles are equal in length. For simplicity, let's assume each leg has a length of 1 unit.
3. Using the Pythagorean theorem [tex]\(a^2 + b^2 = c^2\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are the legs of the triangle and [tex]\(c\)[/tex] is the hypotenuse, we can calculate the hypotenuse as follows:
[tex]\[ 1^2 + 1^2 = c^2 \implies 1 + 1 = c^2 \implies c^2 = 2 \implies c = \sqrt{2} \][/tex]
Given that the triangle is isosceles with legs of 1 unit each, and the hypotenuse is [tex]\(\sqrt{2}\)[/tex], we can find the sine and cosine of [tex]\(45^{\circ}\)[/tex]:
[tex]\[ \sin 45^{\circ} = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{1}{\sqrt{2}} \][/tex]
[tex]\[ \cos 45^{\circ} = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{1}{\sqrt{2}} \][/tex]
Substituting these values into the tangent function:
[tex]\[ \tan 45^{\circ} = \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = \frac{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} = 1 \][/tex]
Thus, the value of [tex]\(\tan 45^{\circ}\)[/tex] is:
[tex]\[ \tan 45^{\circ} = 1 \][/tex]
Therefore, the correct answer is:
B. 1
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.