Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the quadrant in which the terminal point determined by the angle [tex]\(\theta\)[/tex] lies, given that [tex]\(\sin \theta > 0\)[/tex] and [tex]\(\cos \theta > 0\)[/tex], let's analyze the conditions of the trigonometric functions in each quadrant.
1. First quadrant: Both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are positive.
2. Second quadrant: [tex]\(\sin \theta\)[/tex] is positive, but [tex]\(\cos \theta\)[/tex] is negative.
3. Third quadrant: Both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are negative.
4. Fourth quadrant: [tex]\(\sin \theta\)[/tex] is negative, but [tex]\(\cos \theta\)[/tex] is positive.
Given:
- [tex]\(\sin \theta > 0\)[/tex]
- [tex]\(\cos \theta > 0\)[/tex]
According to the conditions listed above:
- In the first quadrant ([tex]\(\theta\)[/tex] between [tex]\(0\)[/tex] and [tex]\(90\)[/tex] degrees), both sine and cosine values are positive.
Since both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are positive, [tex]\(\theta\)[/tex] must lie in the first quadrant.
Therefore, the terminal point determined by [tex]\(\theta\)[/tex] is in:
D. quadrant 1
1. First quadrant: Both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are positive.
2. Second quadrant: [tex]\(\sin \theta\)[/tex] is positive, but [tex]\(\cos \theta\)[/tex] is negative.
3. Third quadrant: Both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are negative.
4. Fourth quadrant: [tex]\(\sin \theta\)[/tex] is negative, but [tex]\(\cos \theta\)[/tex] is positive.
Given:
- [tex]\(\sin \theta > 0\)[/tex]
- [tex]\(\cos \theta > 0\)[/tex]
According to the conditions listed above:
- In the first quadrant ([tex]\(\theta\)[/tex] between [tex]\(0\)[/tex] and [tex]\(90\)[/tex] degrees), both sine and cosine values are positive.
Since both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are positive, [tex]\(\theta\)[/tex] must lie in the first quadrant.
Therefore, the terminal point determined by [tex]\(\theta\)[/tex] is in:
D. quadrant 1
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.