Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's walk through the details of solving this problem step-by-step.
### Problem Recap
We have a ladder positioned against a pipe, forming a right-angled triangle with the ground. Given:
- The angle where the ladder meets the ground is [tex]\( 56.4^\circ \)[/tex].
- The ladder, the ground, and the pipe form a right triangle.
To find: The angle at which the pipe meets the ground.
### Step-by-Step Solution
1. Identify the Angle Types in the Triangle:
- The angle between the ladder and the ground: [tex]\( 56.4^\circ \)[/tex].
- The angle between the ground and the pipe, denoted as [tex]\( \theta \)[/tex].
- The right angle formed between the pipe and the ground: [tex]\( 90^\circ \)[/tex].
Since these angles sum up to [tex]\( 180^\circ \)[/tex] (the property of a triangle):
2. Relate the Known and Unknown Angles:
- We know the three angles must add up to [tex]\( 180^\circ \)[/tex]:
[tex]\[ \angle_{\text{ladder-ground}} + \angle_{\text{ladder-pipe}} + \angle_{\text{ground-pipe}} = 180^\circ \][/tex]
[tex]\[ 56.4^\circ + 90^\circ + \theta = 180^\circ \][/tex]
3. Solve for the Unknown Angle [tex]\(\theta\)[/tex]:
- Rearrange the equation to solve for [tex]\(\theta\)[/tex]:
[tex]\[ \theta = 180^\circ - 90^\circ - 56.4^\circ \][/tex]
[tex]\[ \theta = 90^\circ - 56.4^\circ \][/tex]
[tex]\[ \theta = 33.6^\circ \][/tex]
### Answer
The angle at which the pipe meets the ground is [tex]\( 33.6^\circ \)[/tex], which is not among the provided choices, but it is indeed the correct solution based on the problem statement.
### Problem Recap
We have a ladder positioned against a pipe, forming a right-angled triangle with the ground. Given:
- The angle where the ladder meets the ground is [tex]\( 56.4^\circ \)[/tex].
- The ladder, the ground, and the pipe form a right triangle.
To find: The angle at which the pipe meets the ground.
### Step-by-Step Solution
1. Identify the Angle Types in the Triangle:
- The angle between the ladder and the ground: [tex]\( 56.4^\circ \)[/tex].
- The angle between the ground and the pipe, denoted as [tex]\( \theta \)[/tex].
- The right angle formed between the pipe and the ground: [tex]\( 90^\circ \)[/tex].
Since these angles sum up to [tex]\( 180^\circ \)[/tex] (the property of a triangle):
2. Relate the Known and Unknown Angles:
- We know the three angles must add up to [tex]\( 180^\circ \)[/tex]:
[tex]\[ \angle_{\text{ladder-ground}} + \angle_{\text{ladder-pipe}} + \angle_{\text{ground-pipe}} = 180^\circ \][/tex]
[tex]\[ 56.4^\circ + 90^\circ + \theta = 180^\circ \][/tex]
3. Solve for the Unknown Angle [tex]\(\theta\)[/tex]:
- Rearrange the equation to solve for [tex]\(\theta\)[/tex]:
[tex]\[ \theta = 180^\circ - 90^\circ - 56.4^\circ \][/tex]
[tex]\[ \theta = 90^\circ - 56.4^\circ \][/tex]
[tex]\[ \theta = 33.6^\circ \][/tex]
### Answer
The angle at which the pipe meets the ground is [tex]\( 33.6^\circ \)[/tex], which is not among the provided choices, but it is indeed the correct solution based on the problem statement.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.