Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve this question, let's start with the given value of [tex]\(\tan \theta = \frac{3}{4}\)[/tex] and the information that the terminal point determined by [tex]\(\theta\)[/tex] is in quadrant 3.
1. Understanding [tex]\(\tan \theta = \frac{3}{4}\)[/tex]:
- Tangent of an angle is the ratio of the opposite side to the adjacent side in a right triangle.
- Thus, we have:
[tex]\[ \text{opposite} = 3 \][/tex]
[tex]\[ \text{adjacent} = 4 \][/tex]
2. Finding the hypotenuse:
- Using the Pythagorean theorem, we calculate the hypotenuse of the right triangle:
[tex]\[ \text{hypotenuse} = \sqrt{(\text{opposite})^2 + (\text{adjacent})^2} \][/tex]
Substituting the values:
[tex]\[ \text{hypotenuse} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
3. Finding [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] in quadrant 3:
- In quadrant 3, both sine and cosine functions are negative.
- Sine of an angle is the ratio of the opposite side to the hypotenuse:
[tex]\[ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{3}{5} \][/tex]
Since we are in quadrant 3:
[tex]\[ \sin \theta = -\frac{3}{5} \][/tex]
- Cosine of an angle is the ratio of the adjacent side to the hypotenuse:
[tex]\[ \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{4}{5} \][/tex]
Since we are in quadrant 3:
[tex]\[ \cos \theta = -\frac{4}{5} \][/tex]
4. Finding [tex]\(\cot \theta\)[/tex]:
- Cotangent is the reciprocal of tangent:
[tex]\[ \cot \theta = \frac{1}{\tan \theta} = \frac{1}{\frac{3}{4}} = \frac{4}{3} \][/tex]
5. Finding [tex]\(\csc \theta\)[/tex]:
- Cosecant is the reciprocal of sine:
[tex]\[ \csc \theta = \frac{1}{\sin \theta} = \frac{1}{-\frac{3}{5}} = -\frac{5}{3} \][/tex]
Now, let's match these results with the given options:
- Option A: [tex]\(\sin \theta = \frac{3}{5}\)[/tex] is incorrect because [tex]\(\sin \theta = -\frac{3}{5}\)[/tex] in quadrant 3.
- Option B: [tex]\(\cot \theta = \frac{4}{3}\)[/tex] is correct.
- Option C: [tex]\(\cos \theta = -\frac{4}{5}\)[/tex] is correct.
- Option D: [tex]\(\csc \theta = -\frac{5}{3}\)[/tex] is correct.
Therefore, the correct options are:
B. [tex]\(\cot \theta = \frac{4}{3}\)[/tex]
C. [tex]\(\cos \theta = -\frac{4}{5}\)[/tex]
D. [tex]\(\csc \theta = -\frac{5}{3}\)[/tex]
1. Understanding [tex]\(\tan \theta = \frac{3}{4}\)[/tex]:
- Tangent of an angle is the ratio of the opposite side to the adjacent side in a right triangle.
- Thus, we have:
[tex]\[ \text{opposite} = 3 \][/tex]
[tex]\[ \text{adjacent} = 4 \][/tex]
2. Finding the hypotenuse:
- Using the Pythagorean theorem, we calculate the hypotenuse of the right triangle:
[tex]\[ \text{hypotenuse} = \sqrt{(\text{opposite})^2 + (\text{adjacent})^2} \][/tex]
Substituting the values:
[tex]\[ \text{hypotenuse} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
3. Finding [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] in quadrant 3:
- In quadrant 3, both sine and cosine functions are negative.
- Sine of an angle is the ratio of the opposite side to the hypotenuse:
[tex]\[ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{3}{5} \][/tex]
Since we are in quadrant 3:
[tex]\[ \sin \theta = -\frac{3}{5} \][/tex]
- Cosine of an angle is the ratio of the adjacent side to the hypotenuse:
[tex]\[ \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{4}{5} \][/tex]
Since we are in quadrant 3:
[tex]\[ \cos \theta = -\frac{4}{5} \][/tex]
4. Finding [tex]\(\cot \theta\)[/tex]:
- Cotangent is the reciprocal of tangent:
[tex]\[ \cot \theta = \frac{1}{\tan \theta} = \frac{1}{\frac{3}{4}} = \frac{4}{3} \][/tex]
5. Finding [tex]\(\csc \theta\)[/tex]:
- Cosecant is the reciprocal of sine:
[tex]\[ \csc \theta = \frac{1}{\sin \theta} = \frac{1}{-\frac{3}{5}} = -\frac{5}{3} \][/tex]
Now, let's match these results with the given options:
- Option A: [tex]\(\sin \theta = \frac{3}{5}\)[/tex] is incorrect because [tex]\(\sin \theta = -\frac{3}{5}\)[/tex] in quadrant 3.
- Option B: [tex]\(\cot \theta = \frac{4}{3}\)[/tex] is correct.
- Option C: [tex]\(\cos \theta = -\frac{4}{5}\)[/tex] is correct.
- Option D: [tex]\(\csc \theta = -\frac{5}{3}\)[/tex] is correct.
Therefore, the correct options are:
B. [tex]\(\cot \theta = \frac{4}{3}\)[/tex]
C. [tex]\(\cos \theta = -\frac{4}{5}\)[/tex]
D. [tex]\(\csc \theta = -\frac{5}{3}\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.