Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the problem, we need to understand the relationship between the cosecant function and the unit circle. Let's break it down step-by-step:
1. Unit Circle Definition: On the unit circle, a point [tex]\(P(x, y)\)[/tex] is defined for an angle [tex]\(\theta\)[/tex], where:
- [tex]\(x = \cos \theta\)[/tex]
- [tex]\(y = \sin \theta\)[/tex]
2. Cosecant Function: The cosecant function, [tex]\(\csc \theta\)[/tex], is the reciprocal of the sine function:
- [tex]\(\csc \theta = \frac{1}{\sin \theta}\)[/tex]
3. Substitute Sin [tex]\(\theta\)[/tex]:
- Since [tex]\(y = \sin \theta\)[/tex], we can substitute [tex]\(y\)[/tex] into the cosecant function formula.
- Therefore, [tex]\(\csc \theta = \frac{1}{\sin \theta} = \frac{1}{y}\)[/tex]
Thus, the value of [tex]\(\csc \theta\)[/tex] is [tex]\(\frac{1}{y}\)[/tex].
Consequently, the correct choice is:
[tex]\[ \boxed{3} \][/tex]
1. Unit Circle Definition: On the unit circle, a point [tex]\(P(x, y)\)[/tex] is defined for an angle [tex]\(\theta\)[/tex], where:
- [tex]\(x = \cos \theta\)[/tex]
- [tex]\(y = \sin \theta\)[/tex]
2. Cosecant Function: The cosecant function, [tex]\(\csc \theta\)[/tex], is the reciprocal of the sine function:
- [tex]\(\csc \theta = \frac{1}{\sin \theta}\)[/tex]
3. Substitute Sin [tex]\(\theta\)[/tex]:
- Since [tex]\(y = \sin \theta\)[/tex], we can substitute [tex]\(y\)[/tex] into the cosecant function formula.
- Therefore, [tex]\(\csc \theta = \frac{1}{\sin \theta} = \frac{1}{y}\)[/tex]
Thus, the value of [tex]\(\csc \theta\)[/tex] is [tex]\(\frac{1}{y}\)[/tex].
Consequently, the correct choice is:
[tex]\[ \boxed{3} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.