Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the expression [tex]\( \cot \left(\frac{\pi}{2}\right) \)[/tex], we will consider the definition of the cotangent function and the value of the angle provided.
1. Recall the definition of cotangent:
The cotangent of an angle [tex]\( x \)[/tex] is the reciprocal of the tangent of [tex]\( x \)[/tex]:
[tex]\[ \cot(x) = \frac{1}{\tan(x)} \][/tex]
2. Evaluate the tangent at the given angle:
The angle provided is [tex]\( \frac{\pi}{2} \)[/tex]. The tangent of [tex]\( \frac{\pi}{2} \)[/tex] is:
[tex]\[ \tan\left(\frac{\pi}{2}\right) \][/tex]
3. Understanding the tangent at [tex]\(\frac{\pi}{2}\)[/tex]:
The tangent function [tex]\( \tan(x) \)[/tex] is defined as:
[tex]\[ \tan(x) = \frac{\sin(x)}{\cos(x)} \][/tex]
At [tex]\( x = \frac{\pi}{2} \)[/tex]:
[tex]\[ \sin\left(\frac{\pi}{2}\right) = 1 \quad \text{and} \quad \cos\left(\frac{\pi}{2}\right) = 0 \][/tex]
Therefore:
[tex]\[ \tan\left(\frac{\pi}{2}\right) = \frac{1}{0} \][/tex]
The expression [tex]\(\frac{1}{0}\)[/tex] is undefined, leading many to consider [tex]\(\tan\left(\frac{\pi}{2}\right)\)[/tex] as undefined because division by zero is undefined.
4. Determine the cotangent:
Given that [tex]\(\tan\left(\frac{\pi}{2}\right)\)[/tex] is undefined:
[tex]\[ \cot\left(\frac{\pi}{2}\right) = \frac{1}{\tan\left(\frac{\pi}{2}\right)} \][/tex]
As per the definition, [tex]\( \tan\left(\frac{\pi}{2}\right) \)[/tex] is infinity, and thus [tex]\(\cot\left(\frac{\pi}{2}\right)\)[/tex] would be:
[tex]\[ \cot\left(\frac{\pi}{2}\right) = 0 \][/tex]
Hence, based on the analysis, the answer is:
[tex]\[ \boxed{0} \][/tex]
So, the correct choice from the options is B. 0
1. Recall the definition of cotangent:
The cotangent of an angle [tex]\( x \)[/tex] is the reciprocal of the tangent of [tex]\( x \)[/tex]:
[tex]\[ \cot(x) = \frac{1}{\tan(x)} \][/tex]
2. Evaluate the tangent at the given angle:
The angle provided is [tex]\( \frac{\pi}{2} \)[/tex]. The tangent of [tex]\( \frac{\pi}{2} \)[/tex] is:
[tex]\[ \tan\left(\frac{\pi}{2}\right) \][/tex]
3. Understanding the tangent at [tex]\(\frac{\pi}{2}\)[/tex]:
The tangent function [tex]\( \tan(x) \)[/tex] is defined as:
[tex]\[ \tan(x) = \frac{\sin(x)}{\cos(x)} \][/tex]
At [tex]\( x = \frac{\pi}{2} \)[/tex]:
[tex]\[ \sin\left(\frac{\pi}{2}\right) = 1 \quad \text{and} \quad \cos\left(\frac{\pi}{2}\right) = 0 \][/tex]
Therefore:
[tex]\[ \tan\left(\frac{\pi}{2}\right) = \frac{1}{0} \][/tex]
The expression [tex]\(\frac{1}{0}\)[/tex] is undefined, leading many to consider [tex]\(\tan\left(\frac{\pi}{2}\right)\)[/tex] as undefined because division by zero is undefined.
4. Determine the cotangent:
Given that [tex]\(\tan\left(\frac{\pi}{2}\right)\)[/tex] is undefined:
[tex]\[ \cot\left(\frac{\pi}{2}\right) = \frac{1}{\tan\left(\frac{\pi}{2}\right)} \][/tex]
As per the definition, [tex]\( \tan\left(\frac{\pi}{2}\right) \)[/tex] is infinity, and thus [tex]\(\cot\left(\frac{\pi}{2}\right)\)[/tex] would be:
[tex]\[ \cot\left(\frac{\pi}{2}\right) = 0 \][/tex]
Hence, based on the analysis, the answer is:
[tex]\[ \boxed{0} \][/tex]
So, the correct choice from the options is B. 0
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.