Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Find the value of:

[tex]\[
\cos \left(\frac{3 \pi}{4}\right) =
\][/tex]

A. [tex]\(\frac{\sqrt{2}}{2}\)[/tex]

B. [tex]\(\frac{\sqrt{3}}{2}\)[/tex]

C. [tex]\(\frac{1}{2}\)[/tex]

D. [tex]\(-\frac{\sqrt{2}}{2}\)[/tex]


Sagot :

Certainly! Let's determine the value of [tex]\(\cos\left(\frac{3\pi}{4}\right)\)[/tex].

### Step-by-Step Solution:

1. Understand the Angle:
- The angle [tex]\(\frac{3\pi}{4}\)[/tex] is in radians.
- Converting this to degrees, we get:
[tex]\[ \frac{3\pi}{4} \times \frac{180^\circ}{\pi} = 135^\circ \][/tex]

2. Determine the Quadrant:
- The angle [tex]\(135^\circ\)[/tex] is in the second quadrant.
- Recall that in the second quadrant, the cosine function is negative.

3. Reference Angle:
- The reference angle for [tex]\(135^\circ\)[/tex] is:
[tex]\[ 180^\circ - 135^\circ = 45^\circ \][/tex]

4. Cosine of the Reference Angle:
- The cosine of [tex]\(45^\circ\)[/tex] (or [tex]\(\frac{\pi}{4}\)[/tex] radians) is:
[tex]\[ \cos 45^\circ = \frac{\sqrt{2}}{2} \][/tex]

5. Applying the Sign:
- Since [tex]\(135^\circ\)[/tex] is in the second quadrant, where cosine values are negative, we have:
[tex]\[ \cos 135^\circ = -\cos 45^\circ = -\frac{\sqrt{2}}{2} \][/tex]

Hence, the value of [tex]\(\cos\left(\frac{3\pi}{4}\right)\)[/tex] is:
[tex]\[ -\frac{\sqrt{2}}{2} \][/tex]

### Final Answer:
D. [tex]\(-\frac{\sqrt{2}}{2}\)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.