Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the absolute maximum and minimum values of [tex]\( f(x, y) = x + y - xy \)[/tex] on the closed triangular region [tex]\( D \)[/tex] with vertices [tex]\((0,0)\)[/tex], [tex]\((0,2)\)[/tex], and [tex]\((6,0)\)[/tex], we need to consider the values of the function at the vertices and along the edges of the triangular region. We also need to consider any critical points inside the region.
### Step-by-Step Solution:
1. Evaluate the function at the vertices:
- At [tex]\((0, 0)\)[/tex]:
[tex]\( f(0, 0) = 0 + 0 - 0 \cdot 0 = 0 \)[/tex]
- At [tex]\((0, 2)\)[/tex]:
[tex]\( f(0, 2) = 0 + 2 - 0 \cdot 2 = 2 \)[/tex]
- At [tex]\((6, 0)\)[/tex]:
[tex]\( f(6, 0) = 6 + 0 - 6 \cdot 0 = 6 \)[/tex]
2. Evaluate the function along the edges:
- Along the edge from [tex]\((0,0)\)[/tex] to [tex]\((0,2)\)[/tex]:
- This edge is defined by [tex]\( x = 0 \)[/tex] and [tex]\( 0 \leq y \leq 2 \)[/tex].
- Substitute [tex]\( x = 0 \)[/tex] into [tex]\( f \)[/tex]: [tex]\( f(0, y) = y \)[/tex].
- So, [tex]\( f(0, y) = y \)[/tex] takes values from 0 to 2 on this edge.
- Along the edge from [tex]\((0,0)\)[/tex] to [tex]\((6,0)\)[/tex]:
- This edge is defined by [tex]\( y = 0 \)[/tex] and [tex]\( 0 \leq x \leq 6 \)[/tex].
- Substitute [tex]\( y = 0 \)[/tex] into [tex]\( f \)[/tex]: [tex]\( f(x, 0) = x \)[/tex].
- So, [tex]\( f(x, 0) = x \)[/tex] takes values from 0 to 6 on this edge.
- Along the edge from [tex]\((0,2)\)[/tex] to [tex]\((6,0)\)[/tex]:
- This edge forms a straight line connecting [tex]\((0,2)\)[/tex] and [tex]\((6,0)\)[/tex], which can be parameterized as [tex]\( y = 2 - \frac{1}{3}x \)[/tex].
- Substitute [tex]\( y = 2 - \frac{1}{3}x \)[/tex] into [tex]\( f \)[/tex]:
[tex]\[ f(x, 2 - \frac{1}{3}x) = x + (2 - \frac{1}{3}x) - x(2 - \frac{1}{3}x) = x + 2 - \frac{1}{3}x - 2x + \frac{1}{3}x^2 \][/tex]
[tex]\[ f(x, 2 - \frac{1}{3}x) = -x + 2 + \frac{1}{3}x^2 \][/tex]
- To find the extremum, take the derivative and set it to zero:
[tex]\[ \frac{d}{dx}(-x + 2 + \frac{1}{3}x^2) = -1 + \frac{2}{3}x = 0 \][/tex]
[tex]\[ x = \frac{3}{2} \][/tex]
Then, substitute [tex]\( x = \frac{3}{2} \)[/tex] back into the line equation to find [tex]\( y \)[/tex]:
[tex]\[ y = 2 - \frac{1}{3} \cdot \frac{3}{2} = 2 - \frac{1}{2} = \frac{3}{2} \][/tex]
Substitute [tex]\( x = \frac{3}{2} \)[/tex] and [tex]\( y = \frac{3}{2} \)[/tex] back into [tex]\( f \)[/tex]:
[tex]\[ f(\frac{3}{2}, \frac{3}{2}) = \frac{3}{2} + \frac{3}{2} - \frac{3}{2} \cdot \frac{3}{2} = 3 - \frac{9}{4} = \frac{3}{4} \][/tex]
- Evaluate [tex]\( f \)[/tex] at the endpoints of this edge:
- At [tex]\( (0, 2) \)[/tex], [tex]\( f(0, 2) = 2 \)[/tex].
- At [tex]\( (6, 0) \)[/tex], [tex]\( f(6, 0) = 6 \)[/tex].
3. Evaluate the critical points within the triangular region:
- To find critical points in [tex]\( D \)[/tex], compute the partial derivatives and set them to zero:
[tex]\[ f_x(x, y) = 1 - y = 0 \Rightarrow y = 1 \][/tex]
[tex]\[ f_y(x, y) = 1 - x = 0 \Rightarrow x = 1 \][/tex]
- The point [tex]\((1, 1)\)[/tex] lies inside the region [tex]\( D \)[/tex].
- At [tex]\((1, 1)\)[/tex]:
[tex]\[ f(1, 1) = 1 + 1 - 1 \cdot 1 = 1 \][/tex]
4. Summary and conclusion:
- Values of [tex]\( f \)[/tex] at vertices: [tex]\(0, 2, 6\)[/tex].
- Values of [tex]\( f \)[/tex] along edges: [tex]\(0 \text{ to } 2, 0 \text{ to } 6, \frac{3}{4} \text{ to } 6\)[/tex].
- Values at critical points inside [tex]\( D \)[/tex]: [tex]\(1\)[/tex].
Thus, the absolute maximum value is [tex]\( 6 \)[/tex] and the absolute minimum value is [tex]\( 0 \)[/tex].
### Step-by-Step Solution:
1. Evaluate the function at the vertices:
- At [tex]\((0, 0)\)[/tex]:
[tex]\( f(0, 0) = 0 + 0 - 0 \cdot 0 = 0 \)[/tex]
- At [tex]\((0, 2)\)[/tex]:
[tex]\( f(0, 2) = 0 + 2 - 0 \cdot 2 = 2 \)[/tex]
- At [tex]\((6, 0)\)[/tex]:
[tex]\( f(6, 0) = 6 + 0 - 6 \cdot 0 = 6 \)[/tex]
2. Evaluate the function along the edges:
- Along the edge from [tex]\((0,0)\)[/tex] to [tex]\((0,2)\)[/tex]:
- This edge is defined by [tex]\( x = 0 \)[/tex] and [tex]\( 0 \leq y \leq 2 \)[/tex].
- Substitute [tex]\( x = 0 \)[/tex] into [tex]\( f \)[/tex]: [tex]\( f(0, y) = y \)[/tex].
- So, [tex]\( f(0, y) = y \)[/tex] takes values from 0 to 2 on this edge.
- Along the edge from [tex]\((0,0)\)[/tex] to [tex]\((6,0)\)[/tex]:
- This edge is defined by [tex]\( y = 0 \)[/tex] and [tex]\( 0 \leq x \leq 6 \)[/tex].
- Substitute [tex]\( y = 0 \)[/tex] into [tex]\( f \)[/tex]: [tex]\( f(x, 0) = x \)[/tex].
- So, [tex]\( f(x, 0) = x \)[/tex] takes values from 0 to 6 on this edge.
- Along the edge from [tex]\((0,2)\)[/tex] to [tex]\((6,0)\)[/tex]:
- This edge forms a straight line connecting [tex]\((0,2)\)[/tex] and [tex]\((6,0)\)[/tex], which can be parameterized as [tex]\( y = 2 - \frac{1}{3}x \)[/tex].
- Substitute [tex]\( y = 2 - \frac{1}{3}x \)[/tex] into [tex]\( f \)[/tex]:
[tex]\[ f(x, 2 - \frac{1}{3}x) = x + (2 - \frac{1}{3}x) - x(2 - \frac{1}{3}x) = x + 2 - \frac{1}{3}x - 2x + \frac{1}{3}x^2 \][/tex]
[tex]\[ f(x, 2 - \frac{1}{3}x) = -x + 2 + \frac{1}{3}x^2 \][/tex]
- To find the extremum, take the derivative and set it to zero:
[tex]\[ \frac{d}{dx}(-x + 2 + \frac{1}{3}x^2) = -1 + \frac{2}{3}x = 0 \][/tex]
[tex]\[ x = \frac{3}{2} \][/tex]
Then, substitute [tex]\( x = \frac{3}{2} \)[/tex] back into the line equation to find [tex]\( y \)[/tex]:
[tex]\[ y = 2 - \frac{1}{3} \cdot \frac{3}{2} = 2 - \frac{1}{2} = \frac{3}{2} \][/tex]
Substitute [tex]\( x = \frac{3}{2} \)[/tex] and [tex]\( y = \frac{3}{2} \)[/tex] back into [tex]\( f \)[/tex]:
[tex]\[ f(\frac{3}{2}, \frac{3}{2}) = \frac{3}{2} + \frac{3}{2} - \frac{3}{2} \cdot \frac{3}{2} = 3 - \frac{9}{4} = \frac{3}{4} \][/tex]
- Evaluate [tex]\( f \)[/tex] at the endpoints of this edge:
- At [tex]\( (0, 2) \)[/tex], [tex]\( f(0, 2) = 2 \)[/tex].
- At [tex]\( (6, 0) \)[/tex], [tex]\( f(6, 0) = 6 \)[/tex].
3. Evaluate the critical points within the triangular region:
- To find critical points in [tex]\( D \)[/tex], compute the partial derivatives and set them to zero:
[tex]\[ f_x(x, y) = 1 - y = 0 \Rightarrow y = 1 \][/tex]
[tex]\[ f_y(x, y) = 1 - x = 0 \Rightarrow x = 1 \][/tex]
- The point [tex]\((1, 1)\)[/tex] lies inside the region [tex]\( D \)[/tex].
- At [tex]\((1, 1)\)[/tex]:
[tex]\[ f(1, 1) = 1 + 1 - 1 \cdot 1 = 1 \][/tex]
4. Summary and conclusion:
- Values of [tex]\( f \)[/tex] at vertices: [tex]\(0, 2, 6\)[/tex].
- Values of [tex]\( f \)[/tex] along edges: [tex]\(0 \text{ to } 2, 0 \text{ to } 6, \frac{3}{4} \text{ to } 6\)[/tex].
- Values at critical points inside [tex]\( D \)[/tex]: [tex]\(1\)[/tex].
Thus, the absolute maximum value is [tex]\( 6 \)[/tex] and the absolute minimum value is [tex]\( 0 \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.