Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve for the radius and the center of the circle given the equation [tex]\(x^2 + (y - 10)^2 = 16\)[/tex], we can follow these steps:
1. Identify the Standard Form: The standard form of the equation of a circle is [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] represents the coordinates of the center of the circle, and [tex]\(r\)[/tex] represents the radius of the circle.
2. Compare with the Given Equation: The given equation is [tex]\(x^2 + (y - 10)^2 = 16\)[/tex]. We need to compare this with the standard form to identify [tex]\(h\)[/tex], [tex]\(k\)[/tex], and [tex]\(r^2\)[/tex].
3. Determine the Center:
- Notice that the term [tex]\((x - h)^2\)[/tex] is [tex]\((x - 0)^2\)[/tex] because it is simply [tex]\(x^2\)[/tex]. This means [tex]\(h = 0\)[/tex].
- Also, the term [tex]\((y - k)^2\)[/tex] is given as [tex]\((y - 10)^2\)[/tex]. This means [tex]\(k = 10\)[/tex].
- Therefore, the center of the circle [tex]\((h, k)\)[/tex] is [tex]\((0, 10)\)[/tex].
4. Determine the Radius:
- The right side of the equation is [tex]\(16\)[/tex], which corresponds to [tex]\(r^2\)[/tex] in the standard form. Therefore, [tex]\(r^2 = 16\)[/tex].
- To find the radius [tex]\(r\)[/tex], we take the square root of [tex]\(16\)[/tex], giving us [tex]\(r = 4\)[/tex].
So, the radius of the circle is [tex]\(\boxed{4}\)[/tex] units, and the center of the circle is at [tex]\(\boxed{(0, 10)}\)[/tex].
1. Identify the Standard Form: The standard form of the equation of a circle is [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] represents the coordinates of the center of the circle, and [tex]\(r\)[/tex] represents the radius of the circle.
2. Compare with the Given Equation: The given equation is [tex]\(x^2 + (y - 10)^2 = 16\)[/tex]. We need to compare this with the standard form to identify [tex]\(h\)[/tex], [tex]\(k\)[/tex], and [tex]\(r^2\)[/tex].
3. Determine the Center:
- Notice that the term [tex]\((x - h)^2\)[/tex] is [tex]\((x - 0)^2\)[/tex] because it is simply [tex]\(x^2\)[/tex]. This means [tex]\(h = 0\)[/tex].
- Also, the term [tex]\((y - k)^2\)[/tex] is given as [tex]\((y - 10)^2\)[/tex]. This means [tex]\(k = 10\)[/tex].
- Therefore, the center of the circle [tex]\((h, k)\)[/tex] is [tex]\((0, 10)\)[/tex].
4. Determine the Radius:
- The right side of the equation is [tex]\(16\)[/tex], which corresponds to [tex]\(r^2\)[/tex] in the standard form. Therefore, [tex]\(r^2 = 16\)[/tex].
- To find the radius [tex]\(r\)[/tex], we take the square root of [tex]\(16\)[/tex], giving us [tex]\(r = 4\)[/tex].
So, the radius of the circle is [tex]\(\boxed{4}\)[/tex] units, and the center of the circle is at [tex]\(\boxed{(0, 10)}\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.