Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the system of equations given by
[tex]\[ \begin{cases} x - y = 7 \\ x^2 + y = 149 \end{cases} \][/tex]
we will use substitution and solve these step-by-step.
1. Express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] from the first equation:
[tex]\[ x - y = 7 \implies y = x - 7 \][/tex]
2. Substitute this expression for [tex]\( y \)[/tex] into the second equation:
[tex]\[ x^2 + (x - 7) = 149 \][/tex]
Simplify the equation:
[tex]\[ x^2 + x - 7 = 149 \][/tex]
Combine like terms:
[tex]\[ x^2 + x - 156 = 0 \][/tex]
3. Solve the quadratic equation:
[tex]\[ x^2 + x - 156 = 0 \][/tex]
To solve this quadratic equation, we can factorize it. We need to find two numbers that multiply to [tex]\(-156\)[/tex] and add up to [tex]\(1\)[/tex].
These numbers are [tex]\(13\)[/tex] and [tex]\(-12\)[/tex]. Hence, we factorize:
[tex]\[ x^2 + 13x - 12x - 156 = 0 \][/tex]
Group the terms:
[tex]\[ x(x + 13) - 12(x + 13) = 0 \][/tex]
Factor by grouping:
[tex]\[ (x - 12)(x + 13) = 0 \][/tex]
4. Find the zeroes of the factored equation:
[tex]\[ x - 12 = 0 \implies x = 12 \][/tex]
[tex]\[ x + 13 = 0 \implies x = -13 \][/tex]
5. Substitute these [tex]\( x \)[/tex]-values back into the expression [tex]\( y = x - 7 \)[/tex] to find the corresponding [tex]\( y \)[/tex]-values:
For [tex]\( x = 12 \)[/tex]:
[tex]\[ y = 12 - 7 = 5 \][/tex]
For [tex]\( x = -13 \)[/tex]:
[tex]\[ y = -13 - 7 = -20 \][/tex]
6. Write down the solutions:
The solutions to the system are:
[tex]\[ (x, y) = (12, 5) \quad \text{and} \quad (x, y) = (-13, -20) \][/tex]
So, the system of equations has two solutions:
[tex]\[ (x, y) = (12, 5) \quad \text{and} \quad (x, y) = (-13, -20) \][/tex]
[tex]\[ \begin{cases} x - y = 7 \\ x^2 + y = 149 \end{cases} \][/tex]
we will use substitution and solve these step-by-step.
1. Express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex] from the first equation:
[tex]\[ x - y = 7 \implies y = x - 7 \][/tex]
2. Substitute this expression for [tex]\( y \)[/tex] into the second equation:
[tex]\[ x^2 + (x - 7) = 149 \][/tex]
Simplify the equation:
[tex]\[ x^2 + x - 7 = 149 \][/tex]
Combine like terms:
[tex]\[ x^2 + x - 156 = 0 \][/tex]
3. Solve the quadratic equation:
[tex]\[ x^2 + x - 156 = 0 \][/tex]
To solve this quadratic equation, we can factorize it. We need to find two numbers that multiply to [tex]\(-156\)[/tex] and add up to [tex]\(1\)[/tex].
These numbers are [tex]\(13\)[/tex] and [tex]\(-12\)[/tex]. Hence, we factorize:
[tex]\[ x^2 + 13x - 12x - 156 = 0 \][/tex]
Group the terms:
[tex]\[ x(x + 13) - 12(x + 13) = 0 \][/tex]
Factor by grouping:
[tex]\[ (x - 12)(x + 13) = 0 \][/tex]
4. Find the zeroes of the factored equation:
[tex]\[ x - 12 = 0 \implies x = 12 \][/tex]
[tex]\[ x + 13 = 0 \implies x = -13 \][/tex]
5. Substitute these [tex]\( x \)[/tex]-values back into the expression [tex]\( y = x - 7 \)[/tex] to find the corresponding [tex]\( y \)[/tex]-values:
For [tex]\( x = 12 \)[/tex]:
[tex]\[ y = 12 - 7 = 5 \][/tex]
For [tex]\( x = -13 \)[/tex]:
[tex]\[ y = -13 - 7 = -20 \][/tex]
6. Write down the solutions:
The solutions to the system are:
[tex]\[ (x, y) = (12, 5) \quad \text{and} \quad (x, y) = (-13, -20) \][/tex]
So, the system of equations has two solutions:
[tex]\[ (x, y) = (12, 5) \quad \text{and} \quad (x, y) = (-13, -20) \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.