Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's find the value of [tex]\( w \)[/tex] in the equation:
[tex]\[ \frac{1}{(11^4)^7} = 11^w \][/tex]
We will start by simplifying the left-hand side of the equation step by step.
### Step 1: Simplify the exponent on the left-hand side
First, let's simplify [tex]\((11^4)^7\)[/tex]. We use the property of exponents that states [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (11^4)^7 = 11^{4 \cdot 7} \][/tex]
Calculate the exponent:
[tex]\[ 4 \cdot 7 = 28 \][/tex]
So, we have:
[tex]\[ (11^4)^7 = 11^{28} \][/tex]
### Step 2: Rewrite the fraction using the simplified exponent
Next, write the fraction [tex]\(\frac{1}{11^{28}}\)[/tex]:
[tex]\[ \frac{1}{11^{28}} = 11^{-28} \][/tex]
Using the property that [tex]\( \frac{1}{a^n} = a^{-n} \)[/tex], we find that:
[tex]\[ \frac{1}{11^{28}} = 11^{-28} \][/tex]
### Step 3: Equate the simplified expression to the original equation
We originally had the equation:
[tex]\[ \frac{1}{(11^4)^7} = 11^w \][/tex]
Now we know that:
[tex]\[ \frac{1}{11^{28}} = 11^{-28} \][/tex]
Substituting this into the original equation, we get:
[tex]\[ 11^{-28} = 11^w \][/tex]
### Step 4: Solve for [tex]\( w \)[/tex]
Since the bases are the same, we can equate the exponents:
[tex]\[ -28 = w \][/tex]
Thus, the value of [tex]\( w \)[/tex] is:
[tex]\[ w = -28 \][/tex]
Therefore, [tex]\( w \)[/tex] in the equation [tex]\(\frac{1}{(11^4)^7} = 11^w\)[/tex] is [tex]\(\boxed{-28}\)[/tex].
[tex]\[ \frac{1}{(11^4)^7} = 11^w \][/tex]
We will start by simplifying the left-hand side of the equation step by step.
### Step 1: Simplify the exponent on the left-hand side
First, let's simplify [tex]\((11^4)^7\)[/tex]. We use the property of exponents that states [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (11^4)^7 = 11^{4 \cdot 7} \][/tex]
Calculate the exponent:
[tex]\[ 4 \cdot 7 = 28 \][/tex]
So, we have:
[tex]\[ (11^4)^7 = 11^{28} \][/tex]
### Step 2: Rewrite the fraction using the simplified exponent
Next, write the fraction [tex]\(\frac{1}{11^{28}}\)[/tex]:
[tex]\[ \frac{1}{11^{28}} = 11^{-28} \][/tex]
Using the property that [tex]\( \frac{1}{a^n} = a^{-n} \)[/tex], we find that:
[tex]\[ \frac{1}{11^{28}} = 11^{-28} \][/tex]
### Step 3: Equate the simplified expression to the original equation
We originally had the equation:
[tex]\[ \frac{1}{(11^4)^7} = 11^w \][/tex]
Now we know that:
[tex]\[ \frac{1}{11^{28}} = 11^{-28} \][/tex]
Substituting this into the original equation, we get:
[tex]\[ 11^{-28} = 11^w \][/tex]
### Step 4: Solve for [tex]\( w \)[/tex]
Since the bases are the same, we can equate the exponents:
[tex]\[ -28 = w \][/tex]
Thus, the value of [tex]\( w \)[/tex] is:
[tex]\[ w = -28 \][/tex]
Therefore, [tex]\( w \)[/tex] in the equation [tex]\(\frac{1}{(11^4)^7} = 11^w\)[/tex] is [tex]\(\boxed{-28}\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.