Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve the equation [tex]\(\frac{11y - 2}{3} = y^2 + 2\)[/tex], we need to eliminate the fraction and solve for [tex]\(y\)[/tex]. Follow these steps:
1. Eliminate the fraction: Multiply both sides of the equation by 3 to clear the denominator.
[tex]\[ 3 \cdot \frac{11y - 2}{3} = 3 \cdot (y^2 + 2) \][/tex]
This simplifies to:
[tex]\[ 11y - 2 = 3y^2 + 6 \][/tex]
2. Rearrange the equation: Move all terms to one side to set the equation to zero.
[tex]\[ 11y - 2 - 3y^2 - 6 = 0 \][/tex]
Simplifying this, we get:
[tex]\[ -3y^2 + 11y - 8 = 0 \][/tex]
or equivalently:
[tex]\[ 3y^2 - 11y + 8 = 0 \][/tex]
3. Solve the quadratic equation: We use the quadratic formula [tex]\( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 3 \)[/tex], [tex]\( b = -11 \)[/tex], and [tex]\( c = 8 \)[/tex].
Calculate the discriminant:
[tex]\[ b^2 - 4ac = (-11)^2 - 4(3)(8) \][/tex]
[tex]\[ = 121 - 96 \][/tex]
[tex]\[ = 25 \][/tex]
Since the discriminant is positive, we have two distinct real solutions. Now, find the roots:
[tex]\[ y = \frac{-(-11) \pm \sqrt{25}}{2 \cdot 3} \][/tex]
[tex]\[ y = \frac{11 \pm 5}{6} \][/tex]
4. Calculate the roots:
[tex]\[ y_1 = \frac{11 + 5}{6} = \frac{16}{6} = \frac{8}{3} \][/tex]
[tex]\[ y_2 = \frac{11 - 5}{6} = \frac{6}{6} = 1 \][/tex]
Hence, the solutions to the equation [tex]\(\frac{11y - 2}{3} = y^2 + 2\)[/tex] are:
[tex]\[ y = 1 \quad \text{and} \quad y = \frac{8}{3} \][/tex]
1. Eliminate the fraction: Multiply both sides of the equation by 3 to clear the denominator.
[tex]\[ 3 \cdot \frac{11y - 2}{3} = 3 \cdot (y^2 + 2) \][/tex]
This simplifies to:
[tex]\[ 11y - 2 = 3y^2 + 6 \][/tex]
2. Rearrange the equation: Move all terms to one side to set the equation to zero.
[tex]\[ 11y - 2 - 3y^2 - 6 = 0 \][/tex]
Simplifying this, we get:
[tex]\[ -3y^2 + 11y - 8 = 0 \][/tex]
or equivalently:
[tex]\[ 3y^2 - 11y + 8 = 0 \][/tex]
3. Solve the quadratic equation: We use the quadratic formula [tex]\( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 3 \)[/tex], [tex]\( b = -11 \)[/tex], and [tex]\( c = 8 \)[/tex].
Calculate the discriminant:
[tex]\[ b^2 - 4ac = (-11)^2 - 4(3)(8) \][/tex]
[tex]\[ = 121 - 96 \][/tex]
[tex]\[ = 25 \][/tex]
Since the discriminant is positive, we have two distinct real solutions. Now, find the roots:
[tex]\[ y = \frac{-(-11) \pm \sqrt{25}}{2 \cdot 3} \][/tex]
[tex]\[ y = \frac{11 \pm 5}{6} \][/tex]
4. Calculate the roots:
[tex]\[ y_1 = \frac{11 + 5}{6} = \frac{16}{6} = \frac{8}{3} \][/tex]
[tex]\[ y_2 = \frac{11 - 5}{6} = \frac{6}{6} = 1 \][/tex]
Hence, the solutions to the equation [tex]\(\frac{11y - 2}{3} = y^2 + 2\)[/tex] are:
[tex]\[ y = 1 \quad \text{and} \quad y = \frac{8}{3} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.