Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's find the expression that is equivalent to [tex]\((-4 a b c)^3\)[/tex].
1. Identify the base expression and the exponent:
- The base expression is [tex]\(-4 a b c\)[/tex].
- The exponent is [tex]\(3\)[/tex].
2. Distribute the exponent to each factor in the base:
- The original base is a product of [tex]\(-4\)[/tex], [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex].
- When raising a product to a power, we can raise each factor to that power individually. Hence, the expression becomes:
[tex]\[ (-4 a b c)^3 = (-4)^3 \cdot (a)^3 \cdot (b)^3 \cdot (c)^3 \][/tex]
3. Calculate [tex]\((-4)^3\)[/tex]:
- We first compute the cube of [tex]\(-4\)[/tex]:
[tex]\[ (-4)^3 = -4 \times -4 \times -4 \][/tex]
- Multiplying out:
[tex]\[ (-4) \times (-4) = 16 \\ 16 \times (-4) = -64 \][/tex]
Thus, [tex]\((-4)^3 = -64\)[/tex].
4. Combine the results with the variables raised to their respective powers:
- We now have:
[tex]\[ (-4 a b c)^3 = -64 \cdot a^3 \cdot b^3 \cdot c^3 \][/tex]
5. Write the final expression in standard form:
- The final form of the expression is:
[tex]\[ -64 a^3 b^3 c^3 \][/tex]
Now, we compare this result with the given options. The expression [tex]\((-4 a b c)^3\)[/tex] simplifies to [tex]\(-64 a^3 b^3 c^3\)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{-64 a^3 b^3 c^3} \][/tex]
1. Identify the base expression and the exponent:
- The base expression is [tex]\(-4 a b c\)[/tex].
- The exponent is [tex]\(3\)[/tex].
2. Distribute the exponent to each factor in the base:
- The original base is a product of [tex]\(-4\)[/tex], [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex].
- When raising a product to a power, we can raise each factor to that power individually. Hence, the expression becomes:
[tex]\[ (-4 a b c)^3 = (-4)^3 \cdot (a)^3 \cdot (b)^3 \cdot (c)^3 \][/tex]
3. Calculate [tex]\((-4)^3\)[/tex]:
- We first compute the cube of [tex]\(-4\)[/tex]:
[tex]\[ (-4)^3 = -4 \times -4 \times -4 \][/tex]
- Multiplying out:
[tex]\[ (-4) \times (-4) = 16 \\ 16 \times (-4) = -64 \][/tex]
Thus, [tex]\((-4)^3 = -64\)[/tex].
4. Combine the results with the variables raised to their respective powers:
- We now have:
[tex]\[ (-4 a b c)^3 = -64 \cdot a^3 \cdot b^3 \cdot c^3 \][/tex]
5. Write the final expression in standard form:
- The final form of the expression is:
[tex]\[ -64 a^3 b^3 c^3 \][/tex]
Now, we compare this result with the given options. The expression [tex]\((-4 a b c)^3\)[/tex] simplifies to [tex]\(-64 a^3 b^3 c^3\)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{-64 a^3 b^3 c^3} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.