Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Which expression is equivalent to the given expression?

[tex](-4abc)^3[/tex]

A. [tex]64a^3b^3c^3[/tex]
B. [tex]-64a^3b^3c^3[/tex]
C. [tex]-12a^3b^3c^3[/tex]
D. [tex]12abc[/tex]

Sagot :

Let's find the expression that is equivalent to [tex]\((-4 a b c)^3\)[/tex].

1. Identify the base expression and the exponent:
- The base expression is [tex]\(-4 a b c\)[/tex].
- The exponent is [tex]\(3\)[/tex].

2. Distribute the exponent to each factor in the base:
- The original base is a product of [tex]\(-4\)[/tex], [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex].
- When raising a product to a power, we can raise each factor to that power individually. Hence, the expression becomes:
[tex]\[ (-4 a b c)^3 = (-4)^3 \cdot (a)^3 \cdot (b)^3 \cdot (c)^3 \][/tex]

3. Calculate [tex]\((-4)^3\)[/tex]:
- We first compute the cube of [tex]\(-4\)[/tex]:
[tex]\[ (-4)^3 = -4 \times -4 \times -4 \][/tex]
- Multiplying out:
[tex]\[ (-4) \times (-4) = 16 \\ 16 \times (-4) = -64 \][/tex]
Thus, [tex]\((-4)^3 = -64\)[/tex].

4. Combine the results with the variables raised to their respective powers:
- We now have:
[tex]\[ (-4 a b c)^3 = -64 \cdot a^3 \cdot b^3 \cdot c^3 \][/tex]

5. Write the final expression in standard form:
- The final form of the expression is:
[tex]\[ -64 a^3 b^3 c^3 \][/tex]

Now, we compare this result with the given options. The expression [tex]\((-4 a b c)^3\)[/tex] simplifies to [tex]\(-64 a^3 b^3 c^3\)[/tex].

Hence, the correct answer is:
[tex]\[ \boxed{-64 a^3 b^3 c^3} \][/tex]