Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the problem using the power of a product property, let's recall how this property works. The property states:
[tex]\[ (ab)^n = a^n \cdot b^n \][/tex]
In other words, when you have a product inside a power, you can apply the exponent to each factor separately.
Given the expression [tex]\((7y)^{1/3}\)[/tex], we apply the power of a product property as follows:
[tex]\[ (7y)^{1/3} = 7^{1/3} \cdot y^{1/3} \][/tex]
Therefore, [tex]\((7y)^{1/3}\)[/tex] simplifies to [tex]\(7^{1/3} \cdot y^{1/3}\)[/tex].
Now, let's match this with the given answer options:
1. [tex]\(7 y^{\frac{1}{3}}\)[/tex] - This expression does not correctly apply the exponent [tex]\( \frac{1}{3} \)[/tex] to both 7 and [tex]\( y \)[/tex].
2. [tex]\(7 y^{\frac{2}{3}}\)[/tex] - This expression applies the wrong exponent to [tex]\( y \)[/tex] and does not apply the exponent to 7.
3. [tex]\(\frac{1}{7^3 y^3}\)[/tex] - This expression suggests taking the reciprocal after cubing 7 and [tex]\( y \)[/tex], which is incorrect.
4. [tex]\(7^{\frac{1}{3}} y^{\frac{1}{3}}\)[/tex] - This is the correct simplification according to the power of a product property.
Thus, the correct answer is:
[tex]\[ \boxed{7^{\frac{1}{3}} y^{\frac{1}{3}}} \][/tex]
[tex]\[ (ab)^n = a^n \cdot b^n \][/tex]
In other words, when you have a product inside a power, you can apply the exponent to each factor separately.
Given the expression [tex]\((7y)^{1/3}\)[/tex], we apply the power of a product property as follows:
[tex]\[ (7y)^{1/3} = 7^{1/3} \cdot y^{1/3} \][/tex]
Therefore, [tex]\((7y)^{1/3}\)[/tex] simplifies to [tex]\(7^{1/3} \cdot y^{1/3}\)[/tex].
Now, let's match this with the given answer options:
1. [tex]\(7 y^{\frac{1}{3}}\)[/tex] - This expression does not correctly apply the exponent [tex]\( \frac{1}{3} \)[/tex] to both 7 and [tex]\( y \)[/tex].
2. [tex]\(7 y^{\frac{2}{3}}\)[/tex] - This expression applies the wrong exponent to [tex]\( y \)[/tex] and does not apply the exponent to 7.
3. [tex]\(\frac{1}{7^3 y^3}\)[/tex] - This expression suggests taking the reciprocal after cubing 7 and [tex]\( y \)[/tex], which is incorrect.
4. [tex]\(7^{\frac{1}{3}} y^{\frac{1}{3}}\)[/tex] - This is the correct simplification according to the power of a product property.
Thus, the correct answer is:
[tex]\[ \boxed{7^{\frac{1}{3}} y^{\frac{1}{3}}} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.