At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
Average value: 2.30305455955
z ≈ 4.29945519514
Step-by-step explanation:
You want the value of z such that f(z) is the average value of f(x) = √(x+1) on the interval [1, 8].
Average value
The average value is the integral of the function, divided by the width of the interval.
[tex]\displaystyle\overline{y}=\dfrac{1}{x_2-x_1}\int_{x_1}^{x_2}{f(x)}\,dx=\dfrac{1}{7}\int_1^8{\sqrt{x+1}}\,dx\\\\\\\overline{y}=\dfrac{2}{21}\left((8+1)^\frac{3}{2}-(1+1)^\frac{3}{2}\right)=\dfrac{2(27-2\sqrt{2})}{21}\\\\\\\boxed{\overline{y}\approx 2.30305455955}[/tex]
The corresponding value of z so that f(z) = y is ...
[tex]z=\overline{y}^2-1\\\\\boxed{z \approx 4.29945519514}[/tex]
The average value of f(x)= √(x+1) on 1,8 is [tex]\frac{18}{7} - \frac{4\sqrt{2}}{21}[/tex] . For [tex]\[ z = \frac{2948 - 432\sqrt{2}}{441} - 1 \][/tex] on 1,8 does this average value equal f(z).
1. Integral calculation:
- [tex]\[ \int_1^8 \sqrt{x + 1} \, dx \][/tex]
- Using the substitution u = x + 1, du = dx:
[tex]\[ \int_2^9 \sqrt{u} \, du = \int_2^9 u^{1/2} \, du = \left. \frac{2}{3} u^{3/2} \right|_2^9 = \frac{2}{3} \left( 9^{3/2} - 2^{3/2} \right) \][/tex]
- Since [tex]\( 9^{3/2} = 27 \)[/tex] and [tex]\( 2^{3/2} = 2\sqrt{2} \)[/tex]:
[tex]\[ \frac{2}{3} \left( 27 - 2\sqrt{2} \right) = \frac{54 - 4\sqrt{2}}{3} = 18 - \frac{4\sqrt{2}}{3} \][/tex]
2. Average value calculation:
- Average value = [tex]\frac{1}{8 - 1} \int_1^8 \sqrt{x + 1} \, dx = \frac{1}{7} \left( 18 - \frac{4\sqrt{2}}{3} \right) = \frac{18}{7} - \frac{4\sqrt{2}}{21}[/tex].
3. Finding z such that f(z) equals the average value:
[tex]\[ \sqrt{z + 1} = \frac{18}{7} - \frac{4\sqrt{2}}{21} \][/tex]
- Squaring both sides:
[tex]\[ z + 1 = \left( \frac{18}{7} - \frac{4\sqrt{2}}{21} \right)^2 = \left( \frac{54 - 4\sqrt{2}}{21} \right)^2 = \frac{(54 - 4\sqrt{2})^2}{21^2} \][/tex]
- Calculate [tex]\( (54 - 4\sqrt{2})^2 \)[/tex]:
[tex]\[ (54 - 4\sqrt{2})^2 = 54^2 - 2 \cdot 54 \cdot 4\sqrt{2} + (4\sqrt{2})^2 = 2916 - 432\sqrt{2} + 32 = 2948 - 432\sqrt{2} \][/tex]
- So:
[tex]\[ z + 1 = \frac{2948 - 432\sqrt{2}}{441} \][/tex]
- Finally, solving for z:
[tex]\[ z = \frac{2948 - 432\sqrt{2}}{441} - 1 \][/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.