Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which of the given expressions are polynomials, we need to recall the definition of a polynomial. A polynomial is an algebraic expression consisting of variables and coefficients, with the variables having non-negative integer exponents. The general form of a polynomial in one variable [tex]\( x \)[/tex] is:
[tex]\[ P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \][/tex]
where [tex]\( a_n, a_{n-1}, \ldots, a_1, a_0 \)[/tex] are constants and [tex]\( n \)[/tex] is a non-negative integer.
Let's examine each expression one by one:
### Expression A: [tex]\(\frac{2}{x^3} + x + \frac{1}{2}\)[/tex]
Here, [tex]\(\frac{2}{x^3}\)[/tex] is not a polynomial term because the variable [tex]\( x \)[/tex] is in the denominator, which implies a negative exponent [tex]\( x^{-3} \)[/tex].
### Expression B: [tex]\(\frac{2}{3} x^2 + x + 1\)[/tex]
This expression is a polynomial. All terms have non-negative integer exponents:
- [tex]\(\frac{2}{3} x^2\)[/tex] (exponent 2)
- [tex]\( x \)[/tex] (exponent 1)
- [tex]\( 1 \)[/tex] (constant term, which is [tex]\( x^0 \)[/tex])
### Expression C: [tex]\(x^2 + x + \frac{1}{x^2 + 1}\)[/tex]
The term [tex]\(\frac{1}{x^2 + 1}\)[/tex] is not a polynomial term because it involves a rational function with [tex]\( x \)[/tex] in the denominator.
### Expression D: [tex]\(x^3 + 2x + \sqrt{2}\)[/tex]
This expression is a polynomial. All terms have non-negative integer exponents:
- [tex]\( x^3 \)[/tex] (exponent 3)
- [tex]\( 2x \)[/tex] (exponent 1)
- [tex]\(\sqrt{2}\)[/tex] (constant term, which is [tex]\( x^0 \)[/tex])
### Expression E: [tex]\(x^{\frac{2}{3}} + 0 x + 1\)[/tex]
This expression contains the term [tex]\( x^{\frac{2}{3}} \)[/tex], which has a fractional exponent, thus it is not a polynomial.
Based on the examination, the expressions which are polynomials are:
- Expression B: [tex]\(\frac{2}{3} x^2 + x + 1\)[/tex]
- Expression D: [tex]\(x^3 + 2x + \sqrt{2}\)[/tex]
So, the final result is:
- Expression A: Not a polynomial (False)
- Expression B: Polynomial (True)
- Expression C: Not a polynomial (False)
- Expression D: Polynomial (True)
- Expression E: Not a polynomial (False)
Thus, expressions B and D are polynomials.
[tex]\[ P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \][/tex]
where [tex]\( a_n, a_{n-1}, \ldots, a_1, a_0 \)[/tex] are constants and [tex]\( n \)[/tex] is a non-negative integer.
Let's examine each expression one by one:
### Expression A: [tex]\(\frac{2}{x^3} + x + \frac{1}{2}\)[/tex]
Here, [tex]\(\frac{2}{x^3}\)[/tex] is not a polynomial term because the variable [tex]\( x \)[/tex] is in the denominator, which implies a negative exponent [tex]\( x^{-3} \)[/tex].
### Expression B: [tex]\(\frac{2}{3} x^2 + x + 1\)[/tex]
This expression is a polynomial. All terms have non-negative integer exponents:
- [tex]\(\frac{2}{3} x^2\)[/tex] (exponent 2)
- [tex]\( x \)[/tex] (exponent 1)
- [tex]\( 1 \)[/tex] (constant term, which is [tex]\( x^0 \)[/tex])
### Expression C: [tex]\(x^2 + x + \frac{1}{x^2 + 1}\)[/tex]
The term [tex]\(\frac{1}{x^2 + 1}\)[/tex] is not a polynomial term because it involves a rational function with [tex]\( x \)[/tex] in the denominator.
### Expression D: [tex]\(x^3 + 2x + \sqrt{2}\)[/tex]
This expression is a polynomial. All terms have non-negative integer exponents:
- [tex]\( x^3 \)[/tex] (exponent 3)
- [tex]\( 2x \)[/tex] (exponent 1)
- [tex]\(\sqrt{2}\)[/tex] (constant term, which is [tex]\( x^0 \)[/tex])
### Expression E: [tex]\(x^{\frac{2}{3}} + 0 x + 1\)[/tex]
This expression contains the term [tex]\( x^{\frac{2}{3}} \)[/tex], which has a fractional exponent, thus it is not a polynomial.
Based on the examination, the expressions which are polynomials are:
- Expression B: [tex]\(\frac{2}{3} x^2 + x + 1\)[/tex]
- Expression D: [tex]\(x^3 + 2x + \sqrt{2}\)[/tex]
So, the final result is:
- Expression A: Not a polynomial (False)
- Expression B: Polynomial (True)
- Expression C: Not a polynomial (False)
- Expression D: Polynomial (True)
- Expression E: Not a polynomial (False)
Thus, expressions B and D are polynomials.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.