Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve the problem step-by-step:
1. Initial Conditions:
- Initial distance from the roaring truck engine: [tex]\( d_1 = 8 \)[/tex] meters
- Initial sound intensity at that distance: [tex]\( I_1 = 20 \frac{W}{m^2} \)[/tex]
2. Change in Distance:
- The student moves 4 meters closer to the engine.
- New distance: [tex]\( d_2 = 8 \, \text{meters} - 4 \, \text{meters} = 4 \, \text{meters} \)[/tex]
3. Relationship Between Sound Intensity and Distance:
- The sound intensity [tex]\( I \)[/tex] is inversely proportional to the square of the distance [tex]\( d \)[/tex]. Mathematically, this is represented as:
[tex]\[ I \propto \frac{1}{d^2} \][/tex]
- Hence, we can write this relationship as:
[tex]\[ I_1 \cdot d_1^2 = I_2 \cdot d_2^2 \][/tex]
where [tex]\( I_1 \)[/tex] and [tex]\( d_1 \)[/tex] are the initial intensity and distance, and [tex]\( I_2 \)[/tex] and [tex]\( d_2 \)[/tex] are the new intensity and distance.
4. Solving for New Intensity [tex]\( I_2 \)[/tex]:
- Rearranging the proportion to solve for [tex]\( I_2 \)[/tex]:
[tex]\[ I_2 = I_1 \cdot \left( \frac{d_1}{d_2} \right)^2 \][/tex]
- Substituting the known values:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot \left( \frac{8 \, \text{m}}{4 \, \text{m}} \right)^2 \][/tex]
- Simplify the fraction inside the parentheses:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot (2)^2 \][/tex]
- Calculate the squared term:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot 4 \][/tex]
- Finally, multiply:
[tex]\[ I_2 = 80 \frac{W}{m^2} \][/tex]
So, the measured sound intensity at the new distance of 4 meters is [tex]\( 80 \frac{W}{m^2} \)[/tex].
1. Initial Conditions:
- Initial distance from the roaring truck engine: [tex]\( d_1 = 8 \)[/tex] meters
- Initial sound intensity at that distance: [tex]\( I_1 = 20 \frac{W}{m^2} \)[/tex]
2. Change in Distance:
- The student moves 4 meters closer to the engine.
- New distance: [tex]\( d_2 = 8 \, \text{meters} - 4 \, \text{meters} = 4 \, \text{meters} \)[/tex]
3. Relationship Between Sound Intensity and Distance:
- The sound intensity [tex]\( I \)[/tex] is inversely proportional to the square of the distance [tex]\( d \)[/tex]. Mathematically, this is represented as:
[tex]\[ I \propto \frac{1}{d^2} \][/tex]
- Hence, we can write this relationship as:
[tex]\[ I_1 \cdot d_1^2 = I_2 \cdot d_2^2 \][/tex]
where [tex]\( I_1 \)[/tex] and [tex]\( d_1 \)[/tex] are the initial intensity and distance, and [tex]\( I_2 \)[/tex] and [tex]\( d_2 \)[/tex] are the new intensity and distance.
4. Solving for New Intensity [tex]\( I_2 \)[/tex]:
- Rearranging the proportion to solve for [tex]\( I_2 \)[/tex]:
[tex]\[ I_2 = I_1 \cdot \left( \frac{d_1}{d_2} \right)^2 \][/tex]
- Substituting the known values:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot \left( \frac{8 \, \text{m}}{4 \, \text{m}} \right)^2 \][/tex]
- Simplify the fraction inside the parentheses:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot (2)^2 \][/tex]
- Calculate the squared term:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot 4 \][/tex]
- Finally, multiply:
[tex]\[ I_2 = 80 \frac{W}{m^2} \][/tex]
So, the measured sound intensity at the new distance of 4 meters is [tex]\( 80 \frac{W}{m^2} \)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.