At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Certainly! Let's solve the problem step-by-step:
1. Initial Conditions:
- Initial distance from the roaring truck engine: [tex]\( d_1 = 8 \)[/tex] meters
- Initial sound intensity at that distance: [tex]\( I_1 = 20 \frac{W}{m^2} \)[/tex]
2. Change in Distance:
- The student moves 4 meters closer to the engine.
- New distance: [tex]\( d_2 = 8 \, \text{meters} - 4 \, \text{meters} = 4 \, \text{meters} \)[/tex]
3. Relationship Between Sound Intensity and Distance:
- The sound intensity [tex]\( I \)[/tex] is inversely proportional to the square of the distance [tex]\( d \)[/tex]. Mathematically, this is represented as:
[tex]\[ I \propto \frac{1}{d^2} \][/tex]
- Hence, we can write this relationship as:
[tex]\[ I_1 \cdot d_1^2 = I_2 \cdot d_2^2 \][/tex]
where [tex]\( I_1 \)[/tex] and [tex]\( d_1 \)[/tex] are the initial intensity and distance, and [tex]\( I_2 \)[/tex] and [tex]\( d_2 \)[/tex] are the new intensity and distance.
4. Solving for New Intensity [tex]\( I_2 \)[/tex]:
- Rearranging the proportion to solve for [tex]\( I_2 \)[/tex]:
[tex]\[ I_2 = I_1 \cdot \left( \frac{d_1}{d_2} \right)^2 \][/tex]
- Substituting the known values:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot \left( \frac{8 \, \text{m}}{4 \, \text{m}} \right)^2 \][/tex]
- Simplify the fraction inside the parentheses:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot (2)^2 \][/tex]
- Calculate the squared term:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot 4 \][/tex]
- Finally, multiply:
[tex]\[ I_2 = 80 \frac{W}{m^2} \][/tex]
So, the measured sound intensity at the new distance of 4 meters is [tex]\( 80 \frac{W}{m^2} \)[/tex].
1. Initial Conditions:
- Initial distance from the roaring truck engine: [tex]\( d_1 = 8 \)[/tex] meters
- Initial sound intensity at that distance: [tex]\( I_1 = 20 \frac{W}{m^2} \)[/tex]
2. Change in Distance:
- The student moves 4 meters closer to the engine.
- New distance: [tex]\( d_2 = 8 \, \text{meters} - 4 \, \text{meters} = 4 \, \text{meters} \)[/tex]
3. Relationship Between Sound Intensity and Distance:
- The sound intensity [tex]\( I \)[/tex] is inversely proportional to the square of the distance [tex]\( d \)[/tex]. Mathematically, this is represented as:
[tex]\[ I \propto \frac{1}{d^2} \][/tex]
- Hence, we can write this relationship as:
[tex]\[ I_1 \cdot d_1^2 = I_2 \cdot d_2^2 \][/tex]
where [tex]\( I_1 \)[/tex] and [tex]\( d_1 \)[/tex] are the initial intensity and distance, and [tex]\( I_2 \)[/tex] and [tex]\( d_2 \)[/tex] are the new intensity and distance.
4. Solving for New Intensity [tex]\( I_2 \)[/tex]:
- Rearranging the proportion to solve for [tex]\( I_2 \)[/tex]:
[tex]\[ I_2 = I_1 \cdot \left( \frac{d_1}{d_2} \right)^2 \][/tex]
- Substituting the known values:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot \left( \frac{8 \, \text{m}}{4 \, \text{m}} \right)^2 \][/tex]
- Simplify the fraction inside the parentheses:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot (2)^2 \][/tex]
- Calculate the squared term:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot 4 \][/tex]
- Finally, multiply:
[tex]\[ I_2 = 80 \frac{W}{m^2} \][/tex]
So, the measured sound intensity at the new distance of 4 meters is [tex]\( 80 \frac{W}{m^2} \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.