At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's solve the problem step-by-step:
1. Initial Conditions:
- Initial distance from the roaring truck engine: [tex]\( d_1 = 8 \)[/tex] meters
- Initial sound intensity at that distance: [tex]\( I_1 = 20 \frac{W}{m^2} \)[/tex]
2. Change in Distance:
- The student moves 4 meters closer to the engine.
- New distance: [tex]\( d_2 = 8 \, \text{meters} - 4 \, \text{meters} = 4 \, \text{meters} \)[/tex]
3. Relationship Between Sound Intensity and Distance:
- The sound intensity [tex]\( I \)[/tex] is inversely proportional to the square of the distance [tex]\( d \)[/tex]. Mathematically, this is represented as:
[tex]\[ I \propto \frac{1}{d^2} \][/tex]
- Hence, we can write this relationship as:
[tex]\[ I_1 \cdot d_1^2 = I_2 \cdot d_2^2 \][/tex]
where [tex]\( I_1 \)[/tex] and [tex]\( d_1 \)[/tex] are the initial intensity and distance, and [tex]\( I_2 \)[/tex] and [tex]\( d_2 \)[/tex] are the new intensity and distance.
4. Solving for New Intensity [tex]\( I_2 \)[/tex]:
- Rearranging the proportion to solve for [tex]\( I_2 \)[/tex]:
[tex]\[ I_2 = I_1 \cdot \left( \frac{d_1}{d_2} \right)^2 \][/tex]
- Substituting the known values:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot \left( \frac{8 \, \text{m}}{4 \, \text{m}} \right)^2 \][/tex]
- Simplify the fraction inside the parentheses:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot (2)^2 \][/tex]
- Calculate the squared term:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot 4 \][/tex]
- Finally, multiply:
[tex]\[ I_2 = 80 \frac{W}{m^2} \][/tex]
So, the measured sound intensity at the new distance of 4 meters is [tex]\( 80 \frac{W}{m^2} \)[/tex].
1. Initial Conditions:
- Initial distance from the roaring truck engine: [tex]\( d_1 = 8 \)[/tex] meters
- Initial sound intensity at that distance: [tex]\( I_1 = 20 \frac{W}{m^2} \)[/tex]
2. Change in Distance:
- The student moves 4 meters closer to the engine.
- New distance: [tex]\( d_2 = 8 \, \text{meters} - 4 \, \text{meters} = 4 \, \text{meters} \)[/tex]
3. Relationship Between Sound Intensity and Distance:
- The sound intensity [tex]\( I \)[/tex] is inversely proportional to the square of the distance [tex]\( d \)[/tex]. Mathematically, this is represented as:
[tex]\[ I \propto \frac{1}{d^2} \][/tex]
- Hence, we can write this relationship as:
[tex]\[ I_1 \cdot d_1^2 = I_2 \cdot d_2^2 \][/tex]
where [tex]\( I_1 \)[/tex] and [tex]\( d_1 \)[/tex] are the initial intensity and distance, and [tex]\( I_2 \)[/tex] and [tex]\( d_2 \)[/tex] are the new intensity and distance.
4. Solving for New Intensity [tex]\( I_2 \)[/tex]:
- Rearranging the proportion to solve for [tex]\( I_2 \)[/tex]:
[tex]\[ I_2 = I_1 \cdot \left( \frac{d_1}{d_2} \right)^2 \][/tex]
- Substituting the known values:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot \left( \frac{8 \, \text{m}}{4 \, \text{m}} \right)^2 \][/tex]
- Simplify the fraction inside the parentheses:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot (2)^2 \][/tex]
- Calculate the squared term:
[tex]\[ I_2 = 20 \frac{W}{m^2} \cdot 4 \][/tex]
- Finally, multiply:
[tex]\[ I_2 = 80 \frac{W}{m^2} \][/tex]
So, the measured sound intensity at the new distance of 4 meters is [tex]\( 80 \frac{W}{m^2} \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.