Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the problem of calculating the amount of fencing Jordana will need, we need to look at the combined perimeter of the garden's half-circle and rectangular parts.
1. Understand the Dimensions:
- The rectangular part has a length of 64 feet and a width of 32 feet (64 divided by 2).
- The semicircle's diameter equals the rectangle's width, which is 32 feet. Therefore, the radius of the semicircle is 16 feet (32 divided by 2).
2. Perimeter of the Rectangular Part:
- To get the perimeter of the rectangular part:
- The rectangle's perimeter formula is [tex]\( \text{Perimeter} = 2 \times \text{Length} + 2 \times \text{Width} \)[/tex].
- Since the semicircle covers one width of the rectangle, we modify the perimeter formula by subtracting one width:
- [tex]\[ \text{Perimeter of rectangle} = 2 \times 64 + 2 \times 32 - 32 \\ = 2 \times 64 + 32 \\ = 128 + 32 = 160 \text{ feet} \][/tex]
3. Circumference of the Semicircle:
- For a semicircle, the circumference is half the full circle's circumference plus the diameter of the semicircle (which is along the bottom edge of the rectangular part).
- The formula for the circumference of a circle is [tex]\(2\pi r\)[/tex], so the semicircle's circumference is given by:
- [tex]\[ \text{Circumference of semicircle} = \frac{\pi \times \text{diameter}}{2} \\ \text{which equals } \pi \times \text{radius} \][/tex]
- With the radius (r) being 16 feet and using given [tex]\(\pi = \frac{22}{7}\)[/tex]:
- [tex]\[ \text{Circumference of semicircle} = \frac{22}{7} \times 16 \\ = 50.285714285714285 \text{ feet} \][/tex]
4. Total Fencing Needed:
- Add together the modified rectangular perimeter and the semicircle circumference to find the total fencing required:
- [tex]\[ \text{Total fencing} = 160 + 50.285714285714285 \\ \approx 210.28571428571428 \text{ feet} \][/tex]
So, Jordana will need approximately [tex]\( 210.28571428571428 \)[/tex] feet of fencing to enclose her garden.
The closest choice to this calculation is none of the given options [tex]\(64 ft, 86 ft, 92 ft,\)[/tex] or [tex]\(114 ft\)[/tex]. Thus, it seems this question might have an incorrect multiple-choice answer set. The correct calculated amount of fencing she needs is 210.28571428571428 feet.
1. Understand the Dimensions:
- The rectangular part has a length of 64 feet and a width of 32 feet (64 divided by 2).
- The semicircle's diameter equals the rectangle's width, which is 32 feet. Therefore, the radius of the semicircle is 16 feet (32 divided by 2).
2. Perimeter of the Rectangular Part:
- To get the perimeter of the rectangular part:
- The rectangle's perimeter formula is [tex]\( \text{Perimeter} = 2 \times \text{Length} + 2 \times \text{Width} \)[/tex].
- Since the semicircle covers one width of the rectangle, we modify the perimeter formula by subtracting one width:
- [tex]\[ \text{Perimeter of rectangle} = 2 \times 64 + 2 \times 32 - 32 \\ = 2 \times 64 + 32 \\ = 128 + 32 = 160 \text{ feet} \][/tex]
3. Circumference of the Semicircle:
- For a semicircle, the circumference is half the full circle's circumference plus the diameter of the semicircle (which is along the bottom edge of the rectangular part).
- The formula for the circumference of a circle is [tex]\(2\pi r\)[/tex], so the semicircle's circumference is given by:
- [tex]\[ \text{Circumference of semicircle} = \frac{\pi \times \text{diameter}}{2} \\ \text{which equals } \pi \times \text{radius} \][/tex]
- With the radius (r) being 16 feet and using given [tex]\(\pi = \frac{22}{7}\)[/tex]:
- [tex]\[ \text{Circumference of semicircle} = \frac{22}{7} \times 16 \\ = 50.285714285714285 \text{ feet} \][/tex]
4. Total Fencing Needed:
- Add together the modified rectangular perimeter and the semicircle circumference to find the total fencing required:
- [tex]\[ \text{Total fencing} = 160 + 50.285714285714285 \\ \approx 210.28571428571428 \text{ feet} \][/tex]
So, Jordana will need approximately [tex]\( 210.28571428571428 \)[/tex] feet of fencing to enclose her garden.
The closest choice to this calculation is none of the given options [tex]\(64 ft, 86 ft, 92 ft,\)[/tex] or [tex]\(114 ft\)[/tex]. Thus, it seems this question might have an incorrect multiple-choice answer set. The correct calculated amount of fencing she needs is 210.28571428571428 feet.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.