Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's go through this step-by-step to match each polynomial to its correct name.
1. Polynomial [tex]\( h(x) = 15x + 2 \)[/tex]:
- This polynomial is of the form [tex]\( ax + b \)[/tex].
- It is a linear polynomial because the highest power of [tex]\( x \)[/tex] is 1.
- It has two terms, hence it is a binomial.
- So, [tex]\( h(x) = 15x + 2 \)[/tex] is a Linear binomial.
- Therefore, [tex]\( h(x) \)[/tex] corresponds to option 2.
2. Polynomial [tex]\( f(x) = x^4 - 3x^2 + 9x^2 \)[/tex]:
- First, simplify the polynomial:
[tex]\[ f(x) = x^4 - 3x^2 + 9x^2 = x^4 + 6x^2 \][/tex]
- The highest power of [tex]\( x \)[/tex] is 4, so it is a quartic (4th degree) polynomial.
- It has three terms after simplification, making it a trinomial.
- So, [tex]\( f(x) = x^4 + 6x^2 \)[/tex] is a Quartic trinomial.
- Therefore, [tex]\( f(x) \)[/tex] corresponds to option 3.
3. Polynomial [tex]\( g(x) = -5x^3 \)[/tex]:
- This polynomial has only one term.
- The highest power of [tex]\( x \)[/tex] is 3, making it a cubic (3rd degree) polynomial.
- It is a monomial because it has a single term.
- However, this polynomial is not relevant to the options provided in the question, so we ignore this one for matching.
4. Polynomial [tex]\( f(x) = 3x^2 - 5x + 7 \)[/tex]:
- The highest power of [tex]\( x \)[/tex] is 2, making it a quadratic (2nd degree) polynomial.
- It has three terms, making it a trinomial.
- So, [tex]\( f(x) = 3x^2 - 5x + 7 \)[/tex] is a Quadratic trinomial.
- Therefore, [tex]\( f(x) \)[/tex] corresponds to option 1.
Let's summarize the matches:
- [tex]\( h(x) = 15x + 2 \)[/tex] matches with 2 (Linear binomial)
- [tex]\( f(x) = x^4 + 6x^2 \)[/tex] matches with 3 (Quartic trinomial)
- [tex]\( g(x) = -5x^3 \)[/tex] is irrelevant for this matching.
- [tex]\( f(x) = 3x^2 - 5x + 7 \)[/tex] matches with 1 (Quadratic trinomial)
Thus, the correct matching is:
a: 2
b: 3
d: 1
So the answer is:
[tex]\[ ( 2, 3, 1 ) \][/tex]
1. Polynomial [tex]\( h(x) = 15x + 2 \)[/tex]:
- This polynomial is of the form [tex]\( ax + b \)[/tex].
- It is a linear polynomial because the highest power of [tex]\( x \)[/tex] is 1.
- It has two terms, hence it is a binomial.
- So, [tex]\( h(x) = 15x + 2 \)[/tex] is a Linear binomial.
- Therefore, [tex]\( h(x) \)[/tex] corresponds to option 2.
2. Polynomial [tex]\( f(x) = x^4 - 3x^2 + 9x^2 \)[/tex]:
- First, simplify the polynomial:
[tex]\[ f(x) = x^4 - 3x^2 + 9x^2 = x^4 + 6x^2 \][/tex]
- The highest power of [tex]\( x \)[/tex] is 4, so it is a quartic (4th degree) polynomial.
- It has three terms after simplification, making it a trinomial.
- So, [tex]\( f(x) = x^4 + 6x^2 \)[/tex] is a Quartic trinomial.
- Therefore, [tex]\( f(x) \)[/tex] corresponds to option 3.
3. Polynomial [tex]\( g(x) = -5x^3 \)[/tex]:
- This polynomial has only one term.
- The highest power of [tex]\( x \)[/tex] is 3, making it a cubic (3rd degree) polynomial.
- It is a monomial because it has a single term.
- However, this polynomial is not relevant to the options provided in the question, so we ignore this one for matching.
4. Polynomial [tex]\( f(x) = 3x^2 - 5x + 7 \)[/tex]:
- The highest power of [tex]\( x \)[/tex] is 2, making it a quadratic (2nd degree) polynomial.
- It has three terms, making it a trinomial.
- So, [tex]\( f(x) = 3x^2 - 5x + 7 \)[/tex] is a Quadratic trinomial.
- Therefore, [tex]\( f(x) \)[/tex] corresponds to option 1.
Let's summarize the matches:
- [tex]\( h(x) = 15x + 2 \)[/tex] matches with 2 (Linear binomial)
- [tex]\( f(x) = x^4 + 6x^2 \)[/tex] matches with 3 (Quartic trinomial)
- [tex]\( g(x) = -5x^3 \)[/tex] is irrelevant for this matching.
- [tex]\( f(x) = 3x^2 - 5x + 7 \)[/tex] matches with 1 (Quadratic trinomial)
Thus, the correct matching is:
a: 2
b: 3
d: 1
So the answer is:
[tex]\[ ( 2, 3, 1 ) \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.