Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's examine each statement individually to determine their validity for a triangle with side lengths [tex]\( m \)[/tex], [tex]\( n \)[/tex], and [tex]\( o \)[/tex].
1. Statement 1: [tex]\( m + o > n \)[/tex]
In any triangle, the sum of the lengths of any two sides must be greater than the length of the remaining side. Therefore, for a triangle with sides [tex]\( m \)[/tex], [tex]\( n \)[/tex], and [tex]\( o \)[/tex], this inequality must hold true:
[tex]\[ m + o > n \][/tex]
This follows directly from the triangle inequality theorem.
2. Statement 2: [tex]\( m + n < 0 \)[/tex]
This statement suggests that the sum of two side lengths is less than zero. However, the length of each side of a triangle is a positive number. Therefore, the sum of two positive numbers cannot be less than zero. Hence, this statement is false.
3. Statement 3: [tex]\( m - n > 0 \)[/tex]
This statement can be rewritten as:
[tex]\[ m > n \][/tex]
This would mean that side [tex]\( m \)[/tex] is longer than side [tex]\( n \)[/tex]. While it's possible for this to be true in a specific instance, it is not necessarily true for all triangles in general. Therefore, this statement is not universally true for all triangles.
4. Statement 4: [tex]\( o - n > m \)[/tex]
This statement can be rewritten as:
[tex]\[ o > n + m \][/tex]
According to the triangle inequality theorem, the sum of any two sides must be greater than the third side, meaning:
[tex]\[ o < n + m \][/tex]
Therefore, this statement contradicts the triangle inequality theorem and is false.
Thus, the only statement that is always valid for any triangle with side lengths [tex]\( m \)[/tex], [tex]\( n \)[/tex], and [tex]\( o \)[/tex] is:
[tex]\[ \boxed{m + o > n} \][/tex]
1. Statement 1: [tex]\( m + o > n \)[/tex]
In any triangle, the sum of the lengths of any two sides must be greater than the length of the remaining side. Therefore, for a triangle with sides [tex]\( m \)[/tex], [tex]\( n \)[/tex], and [tex]\( o \)[/tex], this inequality must hold true:
[tex]\[ m + o > n \][/tex]
This follows directly from the triangle inequality theorem.
2. Statement 2: [tex]\( m + n < 0 \)[/tex]
This statement suggests that the sum of two side lengths is less than zero. However, the length of each side of a triangle is a positive number. Therefore, the sum of two positive numbers cannot be less than zero. Hence, this statement is false.
3. Statement 3: [tex]\( m - n > 0 \)[/tex]
This statement can be rewritten as:
[tex]\[ m > n \][/tex]
This would mean that side [tex]\( m \)[/tex] is longer than side [tex]\( n \)[/tex]. While it's possible for this to be true in a specific instance, it is not necessarily true for all triangles in general. Therefore, this statement is not universally true for all triangles.
4. Statement 4: [tex]\( o - n > m \)[/tex]
This statement can be rewritten as:
[tex]\[ o > n + m \][/tex]
According to the triangle inequality theorem, the sum of any two sides must be greater than the third side, meaning:
[tex]\[ o < n + m \][/tex]
Therefore, this statement contradicts the triangle inequality theorem and is false.
Thus, the only statement that is always valid for any triangle with side lengths [tex]\( m \)[/tex], [tex]\( n \)[/tex], and [tex]\( o \)[/tex] is:
[tex]\[ \boxed{m + o > n} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.