At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Triangle [tex]$ABC$[/tex] has vertices [tex]$A(-6,7)$[/tex], [tex]$B(4,-1)$[/tex], and [tex]$C(-2,-9)$[/tex]. Find the length of the median from [tex]$\angle B$[/tex] in triangle [tex]$ABC$[/tex].

A. 4
B. [tex]$\sqrt{18}$[/tex]
C. 8
D. [tex]$\sqrt{68}$[/tex]

Sagot :

To find the length of the median from vertex [tex]\( B \)[/tex] to side [tex]\( AC \)[/tex] in triangle [tex]\( ABC \)[/tex] with vertices [tex]\( A(-6, 7) \)[/tex], [tex]\( B(4, -1) \)[/tex], and [tex]\( C(-2, -9) \)[/tex], we need to follow these steps:

1. Find the midpoint [tex]\( M \)[/tex] of side [tex]\( AC \)[/tex].

The formula for the midpoint [tex]\( M \)[/tex] of a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
For points [tex]\( A(-6, 7) \)[/tex] and [tex]\( C(-2, -9) \)[/tex], we apply the midpoint formula:
[tex]\[ M = \left( \frac{-6 + (-2)}{2}, \frac{7 + (-9)}{2} \right) = \left( \frac{-8}{2}, \frac{-2}{2} \right) = (-4, -1) \][/tex]

2. Calculate the length of the median [tex]\( BM \)[/tex].

The length of a line segment between two points [tex]\( B(x_1, y_1) \)[/tex] and [tex]\( M(x_2, y_2) \)[/tex] is found using the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, [tex]\( B(4, -1) \)[/tex] and [tex]\( M(-4, -1) \)[/tex], so:
[tex]\[ BM = \sqrt{(-4 - 4)^2 + (-1 - (-1))^2} = \sqrt{(-8)^2 + (0)^2} = \sqrt{64} = 8 \][/tex]

Thus, the length of the median from vertex [tex]\( B \)[/tex] to side [tex]\( AC \)[/tex] is [tex]\(\boxed{8}\)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.