At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the length of the median from vertex [tex]\( B \)[/tex] to side [tex]\( AC \)[/tex] in triangle [tex]\( ABC \)[/tex] with vertices [tex]\( A(-6, 7) \)[/tex], [tex]\( B(4, -1) \)[/tex], and [tex]\( C(-2, -9) \)[/tex], we need to follow these steps:
1. Find the midpoint [tex]\( M \)[/tex] of side [tex]\( AC \)[/tex].
The formula for the midpoint [tex]\( M \)[/tex] of a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
For points [tex]\( A(-6, 7) \)[/tex] and [tex]\( C(-2, -9) \)[/tex], we apply the midpoint formula:
[tex]\[ M = \left( \frac{-6 + (-2)}{2}, \frac{7 + (-9)}{2} \right) = \left( \frac{-8}{2}, \frac{-2}{2} \right) = (-4, -1) \][/tex]
2. Calculate the length of the median [tex]\( BM \)[/tex].
The length of a line segment between two points [tex]\( B(x_1, y_1) \)[/tex] and [tex]\( M(x_2, y_2) \)[/tex] is found using the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, [tex]\( B(4, -1) \)[/tex] and [tex]\( M(-4, -1) \)[/tex], so:
[tex]\[ BM = \sqrt{(-4 - 4)^2 + (-1 - (-1))^2} = \sqrt{(-8)^2 + (0)^2} = \sqrt{64} = 8 \][/tex]
Thus, the length of the median from vertex [tex]\( B \)[/tex] to side [tex]\( AC \)[/tex] is [tex]\(\boxed{8}\)[/tex].
1. Find the midpoint [tex]\( M \)[/tex] of side [tex]\( AC \)[/tex].
The formula for the midpoint [tex]\( M \)[/tex] of a line segment with endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
For points [tex]\( A(-6, 7) \)[/tex] and [tex]\( C(-2, -9) \)[/tex], we apply the midpoint formula:
[tex]\[ M = \left( \frac{-6 + (-2)}{2}, \frac{7 + (-9)}{2} \right) = \left( \frac{-8}{2}, \frac{-2}{2} \right) = (-4, -1) \][/tex]
2. Calculate the length of the median [tex]\( BM \)[/tex].
The length of a line segment between two points [tex]\( B(x_1, y_1) \)[/tex] and [tex]\( M(x_2, y_2) \)[/tex] is found using the distance formula:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Here, [tex]\( B(4, -1) \)[/tex] and [tex]\( M(-4, -1) \)[/tex], so:
[tex]\[ BM = \sqrt{(-4 - 4)^2 + (-1 - (-1))^2} = \sqrt{(-8)^2 + (0)^2} = \sqrt{64} = 8 \][/tex]
Thus, the length of the median from vertex [tex]\( B \)[/tex] to side [tex]\( AC \)[/tex] is [tex]\(\boxed{8}\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.