Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Carbon monoxide [tex]\(( CO )\)[/tex] reacts with hydrogen [tex]\(\left( H_2 \right)\)[/tex] to form methane [tex]\(\left( CH_4 \right)\)[/tex] and water [tex]\(\left( H_2O \right)\)[/tex].
[tex]\[
CO(g) + 3H_2(g) \longleftrightarrow CH_4(g) + H_2O(g)
\][/tex]

The reaction is at equilibrium at [tex]\(1,000 \text{ K}\)[/tex]. The equilibrium constant of the reaction is 3.90. At equilibrium, the concentrations are as follows:
[tex]\[
\begin{array}{l}
[CO] = 0.30 \text{ M} \\
\left[ H_2 \right] = 0.10 \text{ M} \\
\left[ H_2O \right] = 0.020 \text{ M}
\end{array}
\][/tex]

What is the equilibrium concentration of [tex]\( CH_4 \)[/tex] expressed in scientific notation?

A. [tex]\( 5.9 \times 10^{-2} \)[/tex]

B. [tex]\( 5.9 \times 10^2 \)[/tex]

C. [tex]\( 0.059 \)[/tex]

D. [tex]\( 0.0059 \)[/tex]


Sagot :

To determine the equilibrium concentration of methane [tex]\(CH_4\)[/tex], we can start with the equilibrium expression based on the reaction:

[tex]\[ \text{CO} (g) + 3 \text{H}_2 (g) \longleftrightarrow \text{CH}_4 (g) + \text{H}_2\text{O} (g) \][/tex]

The equilibrium constant expression for this reaction is given by:

[tex]\[ K_{eq} = \frac{[\text{CH}_4][\text{H}_2\text{O}]}{[\text{CO}][\text{H}_2]^3} \][/tex]

We are provided with:
- [tex]\(K_{eq} = 3.90\)[/tex]
- [tex]\([\text{CO}] = 0.30 \, M\)[/tex]
- [tex]\([\text{H}_2] = 0.10 \, M\)[/tex]
- [tex]\([\text{H}_2\text{O}] = 0.020 \, M\)[/tex]

We need to find the equilibrium concentration of [tex]\(\text{CH}_4\)[/tex], denoted as [tex]\([CH_4] = x\)[/tex].

Rearranging the equilibrium expression to solve for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{K_{eq} \times [\text{CO}] \times [\text{H}_2]^3}{[\text{H}_2\text{O}]} \][/tex]

Substituting the known values into the equation:

[tex]\[ x = \frac{3.90 \times 0.30 \times (0.10)^3}{0.020} \][/tex]

Breaking it down step-by-step:

1. Calculate [tex]\((0.10)^3\)[/tex]:
[tex]\[ (0.10)^3 = 0.001 \][/tex]

2. Multiply [tex]\(3.90 \times 0.30 \times 0.001\)[/tex]:
[tex]\[ 3.90 \times 0.30 \times 0.001 = 0.00117 \][/tex]

3. Divide by [tex]\(0.020\)[/tex]:
[tex]\[ \frac{0.00117}{0.020} = 0.0585 \][/tex]

Thus, the equilibrium concentration of [tex]\(\text{CH}_4\)[/tex] is:

[tex]\[ \boxed{0.0585} \][/tex]

Expressing this in scientific notation:

[tex]\[ \boxed{5.9 \times 10^{-2}} \][/tex]