Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the scale factor by which the line segment [tex]\(\overline{AB}\)[/tex] was dilated to become [tex]\(\overline{A'B'}\)[/tex] at [tex]\(A'(0,4)\)[/tex] and [tex]\(B'(4,6)\)[/tex], we can follow these steps:
1. Find the distances involved:
- Distance between the origin [tex]\((0, 0)\)[/tex] and [tex]\(A'(0, 4)\)[/tex]:
[tex]\[ \text{distance\_O\_Aprime} = \sqrt{(0-0)^2 + (4-0)^2} = \sqrt{16} = 4 \][/tex]
2. Assume a dilation factor [tex]\(k\)[/tex]:
- Since [tex]\(A'(0, 4)\)[/tex] is the image of point [tex]\(A(0, y)\)[/tex], under dilation by a factor [tex]\(k\)[/tex], we have:
[tex]\[ A'(0, 4) = (0, ky) \implies 4 = ky. \][/tex]
3. Consider the distance between [tex]\(A'\)[/tex] and [tex]\(B'\)[/tex]:
- Distance between [tex]\(A'(0, 4)\)[/tex] and [tex]\(B'(4, 6)\)[/tex]:
[tex]\[ \text{distance\_ABprime} = \sqrt{(4-0)^2 + (6-4)^2} = \sqrt{16 + 4} = \sqrt{20} \approx 4.472 \][/tex]
4. Investigate potential scale factors [tex]\(k\)[/tex]:
- Possible dilation factors given are [tex]\(\frac{1}{2}, 2, 3, 4\)[/tex].
5. Evaluate each scale factor [tex]\(k\)[/tex]:
- For [tex]\(k = \frac{1}{2}\)[/tex]:
[tex]\[ \frac{4}{\frac{1}{2}} = 8 \implies 4 \neq 8 \][/tex]
- For [tex]\(k = 2\)[/tex]:
[tex]\[ \frac{4}{2} = 2 \implies 4 \neq 2 \][/tex]
- For [tex]\(k = 3\)[/tex]:
[tex]\[ \frac{4}{3} \approx 1.333 \implies 4 \neq 1.333 \][/tex]
- For [tex]\(k = 4\)[/tex]:
[tex]\[ \frac{4}{4} = 1 \implies 4 \neq 1 \][/tex]
Given this, none of the provided scale factors correctly reconstruct the original segment distances and transformations under dilation. Therefore, from analyzing our provided information, we can conclude that the correct answer is:
[tex]\[ \boxed{None} \][/tex]
1. Find the distances involved:
- Distance between the origin [tex]\((0, 0)\)[/tex] and [tex]\(A'(0, 4)\)[/tex]:
[tex]\[ \text{distance\_O\_Aprime} = \sqrt{(0-0)^2 + (4-0)^2} = \sqrt{16} = 4 \][/tex]
2. Assume a dilation factor [tex]\(k\)[/tex]:
- Since [tex]\(A'(0, 4)\)[/tex] is the image of point [tex]\(A(0, y)\)[/tex], under dilation by a factor [tex]\(k\)[/tex], we have:
[tex]\[ A'(0, 4) = (0, ky) \implies 4 = ky. \][/tex]
3. Consider the distance between [tex]\(A'\)[/tex] and [tex]\(B'\)[/tex]:
- Distance between [tex]\(A'(0, 4)\)[/tex] and [tex]\(B'(4, 6)\)[/tex]:
[tex]\[ \text{distance\_ABprime} = \sqrt{(4-0)^2 + (6-4)^2} = \sqrt{16 + 4} = \sqrt{20} \approx 4.472 \][/tex]
4. Investigate potential scale factors [tex]\(k\)[/tex]:
- Possible dilation factors given are [tex]\(\frac{1}{2}, 2, 3, 4\)[/tex].
5. Evaluate each scale factor [tex]\(k\)[/tex]:
- For [tex]\(k = \frac{1}{2}\)[/tex]:
[tex]\[ \frac{4}{\frac{1}{2}} = 8 \implies 4 \neq 8 \][/tex]
- For [tex]\(k = 2\)[/tex]:
[tex]\[ \frac{4}{2} = 2 \implies 4 \neq 2 \][/tex]
- For [tex]\(k = 3\)[/tex]:
[tex]\[ \frac{4}{3} \approx 1.333 \implies 4 \neq 1.333 \][/tex]
- For [tex]\(k = 4\)[/tex]:
[tex]\[ \frac{4}{4} = 1 \implies 4 \neq 1 \][/tex]
Given this, none of the provided scale factors correctly reconstruct the original segment distances and transformations under dilation. Therefore, from analyzing our provided information, we can conclude that the correct answer is:
[tex]\[ \boxed{None} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.