Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

What is the correct prime factorization of [tex]$24$[/tex]?

A. [tex]2 \cdot 2 \cdot 6[/tex]

B. [tex]2 \cdot 3 \cdot 3[/tex]

C. [tex]2 \cdot 2 \cdot 3 \cdot 3[/tex]

D. [tex]2 \cdot 2 \cdot 2 \cdot 3[/tex]

Sagot :

To determine the correct prime factorization of [tex]\( 24 \)[/tex], let's follow a systematic approach step by step:

1. Start with the smallest prime number: 2.

Since [tex]\( 24 \)[/tex] is an even number, it is divisible by [tex]\( 2 \)[/tex].

[tex]\( 24 \div 2 = 12 \)[/tex]

So, one factor of [tex]\( 24 \)[/tex] is [tex]\( 2 \)[/tex].

2. Continue factoring the quotient: 12.

[tex]\( 12 \)[/tex] is also an even number, so it is again divisible by [tex]\( 2 \)[/tex].

[tex]\( 12 \div 2 = 6 \)[/tex]

Now we have another factor of [tex]\( 2 \)[/tex].

3. Continue factoring the quotient: 6.

[tex]\( 6 \)[/tex] is still an even number, so it is divisible again by [tex]\( 2 \)[/tex].

[tex]\( 6 \div 2 = 3 \)[/tex]

Now we have a third factor of [tex]\( 2 \)[/tex].

4. Now we are left with 3.

[tex]\( 3 \)[/tex] is a prime number and cannot be factored further unless we use [tex]\( 1 \)[/tex].

Now we have completely factored [tex]\( 24 \)[/tex] down to its prime factors. The prime factors we found are three [tex]\( 2 \)[/tex]'s and one [tex]\( 3 \)[/tex].

So, the factorization of [tex]\( 24 \)[/tex] is:

[tex]\[ 24 = 2 \cdot 2 \cdot 2 \cdot 3 \][/tex]

Thus, the correct prime factorization of [tex]\( 24 \)[/tex] corresponds to the given option:
[tex]\[ 2 \cdot 2 \cdot 2 \cdot 3 \][/tex]

So, the correct choice is:
[tex]\[ 2 \cdot 2 \cdot 2 \cdot 3 \][/tex]