Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the correct prime factorization of [tex]\( 24 \)[/tex], let's follow a systematic approach step by step:
1. Start with the smallest prime number: 2.
Since [tex]\( 24 \)[/tex] is an even number, it is divisible by [tex]\( 2 \)[/tex].
[tex]\( 24 \div 2 = 12 \)[/tex]
So, one factor of [tex]\( 24 \)[/tex] is [tex]\( 2 \)[/tex].
2. Continue factoring the quotient: 12.
[tex]\( 12 \)[/tex] is also an even number, so it is again divisible by [tex]\( 2 \)[/tex].
[tex]\( 12 \div 2 = 6 \)[/tex]
Now we have another factor of [tex]\( 2 \)[/tex].
3. Continue factoring the quotient: 6.
[tex]\( 6 \)[/tex] is still an even number, so it is divisible again by [tex]\( 2 \)[/tex].
[tex]\( 6 \div 2 = 3 \)[/tex]
Now we have a third factor of [tex]\( 2 \)[/tex].
4. Now we are left with 3.
[tex]\( 3 \)[/tex] is a prime number and cannot be factored further unless we use [tex]\( 1 \)[/tex].
Now we have completely factored [tex]\( 24 \)[/tex] down to its prime factors. The prime factors we found are three [tex]\( 2 \)[/tex]'s and one [tex]\( 3 \)[/tex].
So, the factorization of [tex]\( 24 \)[/tex] is:
[tex]\[ 24 = 2 \cdot 2 \cdot 2 \cdot 3 \][/tex]
Thus, the correct prime factorization of [tex]\( 24 \)[/tex] corresponds to the given option:
[tex]\[ 2 \cdot 2 \cdot 2 \cdot 3 \][/tex]
So, the correct choice is:
[tex]\[ 2 \cdot 2 \cdot 2 \cdot 3 \][/tex]
1. Start with the smallest prime number: 2.
Since [tex]\( 24 \)[/tex] is an even number, it is divisible by [tex]\( 2 \)[/tex].
[tex]\( 24 \div 2 = 12 \)[/tex]
So, one factor of [tex]\( 24 \)[/tex] is [tex]\( 2 \)[/tex].
2. Continue factoring the quotient: 12.
[tex]\( 12 \)[/tex] is also an even number, so it is again divisible by [tex]\( 2 \)[/tex].
[tex]\( 12 \div 2 = 6 \)[/tex]
Now we have another factor of [tex]\( 2 \)[/tex].
3. Continue factoring the quotient: 6.
[tex]\( 6 \)[/tex] is still an even number, so it is divisible again by [tex]\( 2 \)[/tex].
[tex]\( 6 \div 2 = 3 \)[/tex]
Now we have a third factor of [tex]\( 2 \)[/tex].
4. Now we are left with 3.
[tex]\( 3 \)[/tex] is a prime number and cannot be factored further unless we use [tex]\( 1 \)[/tex].
Now we have completely factored [tex]\( 24 \)[/tex] down to its prime factors. The prime factors we found are three [tex]\( 2 \)[/tex]'s and one [tex]\( 3 \)[/tex].
So, the factorization of [tex]\( 24 \)[/tex] is:
[tex]\[ 24 = 2 \cdot 2 \cdot 2 \cdot 3 \][/tex]
Thus, the correct prime factorization of [tex]\( 24 \)[/tex] corresponds to the given option:
[tex]\[ 2 \cdot 2 \cdot 2 \cdot 3 \][/tex]
So, the correct choice is:
[tex]\[ 2 \cdot 2 \cdot 2 \cdot 3 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.