Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the value of the constant [tex]\( k \)[/tex] in the factored form of the polynomial [tex]\( 8x^3 + 6x^2 - 32x - 24 \)[/tex], we need to expand the factored form and compare the coefficients.
We are given the polynomial:
[tex]\[ 8x^3 + 6x^2 - 32x - 24 \][/tex]
Its factored form is given as:
[tex]\[ 2(x+k)(x-k)(4x+3) \][/tex]
Let's expand this factored form step by step:
1. Begin by expanding [tex]\( (x+k)(x-k) \)[/tex]:
[tex]\[ (x+k)(x-k) = x^2 - k^2 \][/tex]
2. Multiply this result by [tex]\( 4x+3 \)[/tex]:
[tex]\[ (x^2 - k^2)(4x + 3) = x^2(4x + 3) - k^2(4x + 3) \][/tex]
[tex]\[ = 4x^3 + 3x^2 - 4k^2x - 3k^2 \][/tex]
3. Finally, multiply by 2:
[tex]\[ 2(4x^3 + 3x^2 - 4k^2x - 3k^2) = 8x^3 + 6x^2 - 8k^2x - 6k^2 \][/tex]
Now, compare the expanded form with the given polynomial:
[tex]\[ 8x^3 + 6x^2 - 8k^2x - 6k^2 \quad \text{matches} \quad 8x^3 + 6x^2 - 32x - 24 \][/tex]
By matching the coefficients, we get:
1. For the [tex]\( x \)[/tex] term:
[tex]\[ -8k^2 = -32 \][/tex]
[tex]\[ k^2 = 4 \][/tex]
[tex]\[ k = \pm 2 \][/tex]
Since [tex]\( k \)[/tex] can be either 2 or -2, but we are often interested in the absolute value of [tex]\( k \)[/tex], which is:
[tex]\[ k = 2 \][/tex]
Therefore, the correct value of the constant [tex]\( k \)[/tex] is:
[tex]\[ \boxed{2} \][/tex]
We are given the polynomial:
[tex]\[ 8x^3 + 6x^2 - 32x - 24 \][/tex]
Its factored form is given as:
[tex]\[ 2(x+k)(x-k)(4x+3) \][/tex]
Let's expand this factored form step by step:
1. Begin by expanding [tex]\( (x+k)(x-k) \)[/tex]:
[tex]\[ (x+k)(x-k) = x^2 - k^2 \][/tex]
2. Multiply this result by [tex]\( 4x+3 \)[/tex]:
[tex]\[ (x^2 - k^2)(4x + 3) = x^2(4x + 3) - k^2(4x + 3) \][/tex]
[tex]\[ = 4x^3 + 3x^2 - 4k^2x - 3k^2 \][/tex]
3. Finally, multiply by 2:
[tex]\[ 2(4x^3 + 3x^2 - 4k^2x - 3k^2) = 8x^3 + 6x^2 - 8k^2x - 6k^2 \][/tex]
Now, compare the expanded form with the given polynomial:
[tex]\[ 8x^3 + 6x^2 - 8k^2x - 6k^2 \quad \text{matches} \quad 8x^3 + 6x^2 - 32x - 24 \][/tex]
By matching the coefficients, we get:
1. For the [tex]\( x \)[/tex] term:
[tex]\[ -8k^2 = -32 \][/tex]
[tex]\[ k^2 = 4 \][/tex]
[tex]\[ k = \pm 2 \][/tex]
Since [tex]\( k \)[/tex] can be either 2 or -2, but we are often interested in the absolute value of [tex]\( k \)[/tex], which is:
[tex]\[ k = 2 \][/tex]
Therefore, the correct value of the constant [tex]\( k \)[/tex] is:
[tex]\[ \boxed{2} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.