Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's tackle this problem step by step:
### Step-by-Step Solution
1. Establish Variables:
- Let [tex]\( N \)[/tex] be the total number of cards.
- Let [tex]\( G \)[/tex] be the total number of green cards.
2. Probability of Drawing the First Green Card:
- The probability of drawing a green card on the first draw:
[tex]\[ P(\text{First Green}) = \frac{G}{N} \][/tex]
3. Probability of Drawing the Second Green Card Given the First Card is Not Replaced:
- After drawing the first green card, the number of green cards left is [tex]\( G - 1 \)[/tex].
- The total number of cards left is [tex]\( N - 1 \)[/tex].
- The probability of drawing a second green card after drawing the first green card:
[tex]\[ P(\text{Second Green} \mid \text{First Green}) = \frac{G - 1}{N - 1} \][/tex]
4. Combined Probability of Both Events:
- The combined probability of drawing two green cards in succession:
[tex]\[ P(\text{Two Green Cards}) = P(\text{First Green}) \times P(\text{Second Green} \mid \text{First Green}) \][/tex]
[tex]\[ P(\text{Two Green Cards}) = \frac{G}{N} \times \frac{G - 1}{N - 1} \][/tex]
[tex]\[ P(\text{Two Green Cards}) = \frac{G(G - 1)}{N(N - 1)} \][/tex]
5. Simplify the Fraction:
- The fraction [tex]\( \frac{G(G - 1)}{N(N - 1)} \)[/tex] should be simplified to its lowest terms.
- To do this, find the Greatest Common Divisor (GCD) of the numerator and denominator and divide both by that GCD.
### Example with [tex]\( N = 52 \)[/tex] and [tex]\( G = 10 \)[/tex]:
1. Substitute Values:
- Total number of cards, [tex]\( N = 52 \)[/tex]
- Total number of green cards, [tex]\( G = 10 \)[/tex]
2. Calculate the Probability:
[tex]\[ P(\text{Two Green Cards}) = \frac{10 \times 9}{52 \times 51} \][/tex]
[tex]\[ P(\text{Two Green Cards}) = \frac{90}{2652} \][/tex]
3. Simplify the Fraction:
- Find the GCD of 90 and 2652:
[tex]\[ \text{GCD}(90, 2652) = 6 \][/tex]
- Divide both the numerator and the denominator by the GCD:
[tex]\[ \frac{90 \div 6}{2652 \div 6} = \frac{15}{442} \][/tex]
Therefore, the simplified fraction for the probability of drawing two green cards consecutively is [tex]\( \frac{15}{442} \)[/tex].
### Conclusion
- The numerator of the simplified fraction is:
[tex]\[ 15 \][/tex]
Thus, the answer is 15.
### Step-by-Step Solution
1. Establish Variables:
- Let [tex]\( N \)[/tex] be the total number of cards.
- Let [tex]\( G \)[/tex] be the total number of green cards.
2. Probability of Drawing the First Green Card:
- The probability of drawing a green card on the first draw:
[tex]\[ P(\text{First Green}) = \frac{G}{N} \][/tex]
3. Probability of Drawing the Second Green Card Given the First Card is Not Replaced:
- After drawing the first green card, the number of green cards left is [tex]\( G - 1 \)[/tex].
- The total number of cards left is [tex]\( N - 1 \)[/tex].
- The probability of drawing a second green card after drawing the first green card:
[tex]\[ P(\text{Second Green} \mid \text{First Green}) = \frac{G - 1}{N - 1} \][/tex]
4. Combined Probability of Both Events:
- The combined probability of drawing two green cards in succession:
[tex]\[ P(\text{Two Green Cards}) = P(\text{First Green}) \times P(\text{Second Green} \mid \text{First Green}) \][/tex]
[tex]\[ P(\text{Two Green Cards}) = \frac{G}{N} \times \frac{G - 1}{N - 1} \][/tex]
[tex]\[ P(\text{Two Green Cards}) = \frac{G(G - 1)}{N(N - 1)} \][/tex]
5. Simplify the Fraction:
- The fraction [tex]\( \frac{G(G - 1)}{N(N - 1)} \)[/tex] should be simplified to its lowest terms.
- To do this, find the Greatest Common Divisor (GCD) of the numerator and denominator and divide both by that GCD.
### Example with [tex]\( N = 52 \)[/tex] and [tex]\( G = 10 \)[/tex]:
1. Substitute Values:
- Total number of cards, [tex]\( N = 52 \)[/tex]
- Total number of green cards, [tex]\( G = 10 \)[/tex]
2. Calculate the Probability:
[tex]\[ P(\text{Two Green Cards}) = \frac{10 \times 9}{52 \times 51} \][/tex]
[tex]\[ P(\text{Two Green Cards}) = \frac{90}{2652} \][/tex]
3. Simplify the Fraction:
- Find the GCD of 90 and 2652:
[tex]\[ \text{GCD}(90, 2652) = 6 \][/tex]
- Divide both the numerator and the denominator by the GCD:
[tex]\[ \frac{90 \div 6}{2652 \div 6} = \frac{15}{442} \][/tex]
Therefore, the simplified fraction for the probability of drawing two green cards consecutively is [tex]\( \frac{15}{442} \)[/tex].
### Conclusion
- The numerator of the simplified fraction is:
[tex]\[ 15 \][/tex]
Thus, the answer is 15.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.