Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the greatest common factor (GCF) of the polynomial [tex]\(-18 x^4 y - 9 x y^3 + 3 x y^2\)[/tex], we will follow these steps:
1. Identify the coefficients:
- The coefficients in the given polynomial are [tex]\(-18\)[/tex], [tex]\(-9\)[/tex], and [tex]\(3\)[/tex].
2. Find the GCF of the coefficients:
- The GCF of [tex]\(-18\)[/tex], [tex]\(-9\)[/tex], and [tex]\(3\)[/tex] is [tex]\(3\)[/tex].
3. Determine the variables and their exponents:
- The terms in the polynomial are [tex]\(-18 x^4 y\)[/tex], [tex]\(-9 x y^3\)[/tex], and [tex]\(3 x y^2\)[/tex].
- For the variable [tex]\(x\)[/tex]:
- The exponents are [tex]\(4\)[/tex], [tex]\(1\)[/tex], and [tex]\(1\)[/tex].
- For the variable [tex]\(y\)[/tex]:
- The exponents are [tex]\(1\)[/tex], [tex]\(3\)[/tex], and [tex]\(2\)[/tex].
4. Find the lowest power of each variable:
- For [tex]\(x\)[/tex], the lowest exponent among [tex]\(4\)[/tex], [tex]\(1\)[/tex], and [tex]\(1\)[/tex] is [tex]\(1\)[/tex].
- For [tex]\(y\)[/tex], the lowest exponent among [tex]\(1\)[/tex], [tex]\(3\)[/tex], and [tex]\(2\)[/tex] is [tex]\(1\)[/tex].
5. Combine the GCF of the coefficients and the lowest powers of the variables:
- The GCF of the coefficients is [tex]\(3\)[/tex].
- The lowest power of [tex]\(x\)[/tex] is [tex]\(x^1\)[/tex] or simply [tex]\(x\)[/tex].
- The lowest power of [tex]\(y\)[/tex] is [tex]\(y^1\)[/tex] or simply [tex]\(y\)[/tex].
Hence, the greatest common factor of the polynomial [tex]\(-18 x^4 y - 9 x y^3 + 3 x y^2\)[/tex] is:
[tex]\[ 3xy \][/tex]
1. Identify the coefficients:
- The coefficients in the given polynomial are [tex]\(-18\)[/tex], [tex]\(-9\)[/tex], and [tex]\(3\)[/tex].
2. Find the GCF of the coefficients:
- The GCF of [tex]\(-18\)[/tex], [tex]\(-9\)[/tex], and [tex]\(3\)[/tex] is [tex]\(3\)[/tex].
3. Determine the variables and their exponents:
- The terms in the polynomial are [tex]\(-18 x^4 y\)[/tex], [tex]\(-9 x y^3\)[/tex], and [tex]\(3 x y^2\)[/tex].
- For the variable [tex]\(x\)[/tex]:
- The exponents are [tex]\(4\)[/tex], [tex]\(1\)[/tex], and [tex]\(1\)[/tex].
- For the variable [tex]\(y\)[/tex]:
- The exponents are [tex]\(1\)[/tex], [tex]\(3\)[/tex], and [tex]\(2\)[/tex].
4. Find the lowest power of each variable:
- For [tex]\(x\)[/tex], the lowest exponent among [tex]\(4\)[/tex], [tex]\(1\)[/tex], and [tex]\(1\)[/tex] is [tex]\(1\)[/tex].
- For [tex]\(y\)[/tex], the lowest exponent among [tex]\(1\)[/tex], [tex]\(3\)[/tex], and [tex]\(2\)[/tex] is [tex]\(1\)[/tex].
5. Combine the GCF of the coefficients and the lowest powers of the variables:
- The GCF of the coefficients is [tex]\(3\)[/tex].
- The lowest power of [tex]\(x\)[/tex] is [tex]\(x^1\)[/tex] or simply [tex]\(x\)[/tex].
- The lowest power of [tex]\(y\)[/tex] is [tex]\(y^1\)[/tex] or simply [tex]\(y\)[/tex].
Hence, the greatest common factor of the polynomial [tex]\(-18 x^4 y - 9 x y^3 + 3 x y^2\)[/tex] is:
[tex]\[ 3xy \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.