At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the equation [tex]\( 2x^2 + 16x - 8 = 0 \)[/tex] using the method of completing the square, follow these steps:
1. Divide the whole equation by 2 to simplify it:
[tex]\[ \frac{2x^2 + 16x - 8}{2} = 0 \implies x^2 + 8x - 4 = 0 \][/tex]
2. Rearrange the equation to set it in the form where the linear and quadratic terms are grouped together:
[tex]\[ x^2 + 8x = 4 \][/tex]
3. Complete the square by adding and subtracting the square of half the coefficient of [tex]\( x \)[/tex]. Here, the coefficient of [tex]\( x \)[/tex] is 8, so [tex]\(\left( \frac{8}{2} \right)^2 = 16\)[/tex]:
[tex]\[ x^2 + 8x + 16 - 16 = 4 \][/tex]
Which simplifies to:
[tex]\[ (x + 4)^2 - 16 = 4 \][/tex]
4. Isolate the perfect square term by adding 16 to both sides:
[tex]\[ (x + 4)^2 = 20 \][/tex]
5. Solve for [tex]\( x \)[/tex] by taking the square root of both sides. Remember to consider both the positive and negative roots:
[tex]\[ x + 4 = \pm \sqrt{20} \][/tex]
Since [tex]\( \sqrt{20} \)[/tex] can be simplified to [tex]\( 2\sqrt{5} \)[/tex]:
[tex]\[ x + 4 = \pm 2\sqrt{5} \][/tex]
6. Solve for [tex]\( x \)[/tex] by subtracting 4 from both sides:
[tex]\[ x = -4 \pm 2\sqrt{5} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{x = -4 \pm 2\sqrt{5}} \][/tex]
So, the correct option is:
[tex]\[ \boxed{D. \, x = -4 \pm 2\sqrt{5}} \][/tex]
1. Divide the whole equation by 2 to simplify it:
[tex]\[ \frac{2x^2 + 16x - 8}{2} = 0 \implies x^2 + 8x - 4 = 0 \][/tex]
2. Rearrange the equation to set it in the form where the linear and quadratic terms are grouped together:
[tex]\[ x^2 + 8x = 4 \][/tex]
3. Complete the square by adding and subtracting the square of half the coefficient of [tex]\( x \)[/tex]. Here, the coefficient of [tex]\( x \)[/tex] is 8, so [tex]\(\left( \frac{8}{2} \right)^2 = 16\)[/tex]:
[tex]\[ x^2 + 8x + 16 - 16 = 4 \][/tex]
Which simplifies to:
[tex]\[ (x + 4)^2 - 16 = 4 \][/tex]
4. Isolate the perfect square term by adding 16 to both sides:
[tex]\[ (x + 4)^2 = 20 \][/tex]
5. Solve for [tex]\( x \)[/tex] by taking the square root of both sides. Remember to consider both the positive and negative roots:
[tex]\[ x + 4 = \pm \sqrt{20} \][/tex]
Since [tex]\( \sqrt{20} \)[/tex] can be simplified to [tex]\( 2\sqrt{5} \)[/tex]:
[tex]\[ x + 4 = \pm 2\sqrt{5} \][/tex]
6. Solve for [tex]\( x \)[/tex] by subtracting 4 from both sides:
[tex]\[ x = -4 \pm 2\sqrt{5} \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{x = -4 \pm 2\sqrt{5}} \][/tex]
So, the correct option is:
[tex]\[ \boxed{D. \, x = -4 \pm 2\sqrt{5}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.