Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

The table represents an exponential function.
\begin{tabular}{|c|c|}
\hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline 1 & 0.25 \\
\hline 2 & 0.125 \\
\hline 3 & 0.0625 \\
\hline 4 & 0.03125 \\
\hline
\end{tabular}

What is the multiplicative rate of change of the function?

A. 0.2

B. 0.25

C. 0.5

D. 0.75

Sagot :

To determine the multiplicative rate of change for the given exponential function, let's analyze the relationship between the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values given in the table.

First, we observe the values:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0.25 \\ \hline 2 & 0.125 \\ \hline 3 & 0.0625 \\ \hline 4 & 0.03125 \\ \hline \end{array} \][/tex]

We need to find the rate of change by looking at the successive terms of [tex]\( y \)[/tex]. This rate of change can be calculated by dividing a [tex]\( y \)[/tex]-value by the previous [tex]\( y \)[/tex]-value.

Let's compute it step-by-step:

1. Calculate the ratio of [tex]\( y \)[/tex] for [tex]\( x = 2 \)[/tex] to [tex]\( y \)[/tex] for [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{y(2)}{y(1)} = \frac{0.125}{0.25} = 0.5 \][/tex]

2. Verify consistency by calculating the ratio for the next pairs of [tex]\( y \)[/tex]-values:
[tex]\[ \frac{y(3)}{y(2)} = \frac{0.0625}{0.125} = 0.5 \][/tex]
[tex]\[ \frac{y(4)}{y(3)} = \frac{0.03125}{0.0625} = 0.5 \][/tex]

As we can see, the ratio is consistently [tex]\( 0.5 \)[/tex] for each pair of successive [tex]\( y \)[/tex]-values.

Thus, the multiplicative rate of change of the function is:

[tex]\[ 0.5 \][/tex]

So, the correct answer is:
- 0.5