Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the multiplicative rate of change for the given exponential function, let's analyze the relationship between the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values given in the table.
First, we observe the values:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0.25 \\ \hline 2 & 0.125 \\ \hline 3 & 0.0625 \\ \hline 4 & 0.03125 \\ \hline \end{array} \][/tex]
We need to find the rate of change by looking at the successive terms of [tex]\( y \)[/tex]. This rate of change can be calculated by dividing a [tex]\( y \)[/tex]-value by the previous [tex]\( y \)[/tex]-value.
Let's compute it step-by-step:
1. Calculate the ratio of [tex]\( y \)[/tex] for [tex]\( x = 2 \)[/tex] to [tex]\( y \)[/tex] for [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{y(2)}{y(1)} = \frac{0.125}{0.25} = 0.5 \][/tex]
2. Verify consistency by calculating the ratio for the next pairs of [tex]\( y \)[/tex]-values:
[tex]\[ \frac{y(3)}{y(2)} = \frac{0.0625}{0.125} = 0.5 \][/tex]
[tex]\[ \frac{y(4)}{y(3)} = \frac{0.03125}{0.0625} = 0.5 \][/tex]
As we can see, the ratio is consistently [tex]\( 0.5 \)[/tex] for each pair of successive [tex]\( y \)[/tex]-values.
Thus, the multiplicative rate of change of the function is:
[tex]\[ 0.5 \][/tex]
So, the correct answer is:
- 0.5
First, we observe the values:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0.25 \\ \hline 2 & 0.125 \\ \hline 3 & 0.0625 \\ \hline 4 & 0.03125 \\ \hline \end{array} \][/tex]
We need to find the rate of change by looking at the successive terms of [tex]\( y \)[/tex]. This rate of change can be calculated by dividing a [tex]\( y \)[/tex]-value by the previous [tex]\( y \)[/tex]-value.
Let's compute it step-by-step:
1. Calculate the ratio of [tex]\( y \)[/tex] for [tex]\( x = 2 \)[/tex] to [tex]\( y \)[/tex] for [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{y(2)}{y(1)} = \frac{0.125}{0.25} = 0.5 \][/tex]
2. Verify consistency by calculating the ratio for the next pairs of [tex]\( y \)[/tex]-values:
[tex]\[ \frac{y(3)}{y(2)} = \frac{0.0625}{0.125} = 0.5 \][/tex]
[tex]\[ \frac{y(4)}{y(3)} = \frac{0.03125}{0.0625} = 0.5 \][/tex]
As we can see, the ratio is consistently [tex]\( 0.5 \)[/tex] for each pair of successive [tex]\( y \)[/tex]-values.
Thus, the multiplicative rate of change of the function is:
[tex]\[ 0.5 \][/tex]
So, the correct answer is:
- 0.5
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.