Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the multiplicative rate of change for the given exponential function, let's analyze the relationship between the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values given in the table.
First, we observe the values:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0.25 \\ \hline 2 & 0.125 \\ \hline 3 & 0.0625 \\ \hline 4 & 0.03125 \\ \hline \end{array} \][/tex]
We need to find the rate of change by looking at the successive terms of [tex]\( y \)[/tex]. This rate of change can be calculated by dividing a [tex]\( y \)[/tex]-value by the previous [tex]\( y \)[/tex]-value.
Let's compute it step-by-step:
1. Calculate the ratio of [tex]\( y \)[/tex] for [tex]\( x = 2 \)[/tex] to [tex]\( y \)[/tex] for [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{y(2)}{y(1)} = \frac{0.125}{0.25} = 0.5 \][/tex]
2. Verify consistency by calculating the ratio for the next pairs of [tex]\( y \)[/tex]-values:
[tex]\[ \frac{y(3)}{y(2)} = \frac{0.0625}{0.125} = 0.5 \][/tex]
[tex]\[ \frac{y(4)}{y(3)} = \frac{0.03125}{0.0625} = 0.5 \][/tex]
As we can see, the ratio is consistently [tex]\( 0.5 \)[/tex] for each pair of successive [tex]\( y \)[/tex]-values.
Thus, the multiplicative rate of change of the function is:
[tex]\[ 0.5 \][/tex]
So, the correct answer is:
- 0.5
First, we observe the values:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 0.25 \\ \hline 2 & 0.125 \\ \hline 3 & 0.0625 \\ \hline 4 & 0.03125 \\ \hline \end{array} \][/tex]
We need to find the rate of change by looking at the successive terms of [tex]\( y \)[/tex]. This rate of change can be calculated by dividing a [tex]\( y \)[/tex]-value by the previous [tex]\( y \)[/tex]-value.
Let's compute it step-by-step:
1. Calculate the ratio of [tex]\( y \)[/tex] for [tex]\( x = 2 \)[/tex] to [tex]\( y \)[/tex] for [tex]\( x = 1 \)[/tex]:
[tex]\[ \frac{y(2)}{y(1)} = \frac{0.125}{0.25} = 0.5 \][/tex]
2. Verify consistency by calculating the ratio for the next pairs of [tex]\( y \)[/tex]-values:
[tex]\[ \frac{y(3)}{y(2)} = \frac{0.0625}{0.125} = 0.5 \][/tex]
[tex]\[ \frac{y(4)}{y(3)} = \frac{0.03125}{0.0625} = 0.5 \][/tex]
As we can see, the ratio is consistently [tex]\( 0.5 \)[/tex] for each pair of successive [tex]\( y \)[/tex]-values.
Thus, the multiplicative rate of change of the function is:
[tex]\[ 0.5 \][/tex]
So, the correct answer is:
- 0.5
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.