Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the value of [tex]\(\cos 45^\circ\)[/tex], we can refer to known trigonometric values associated with specific angles.
First, we know that [tex]\(\cos 45^\circ\)[/tex] is a well-known value in trigonometry. For a 45-degree angle, the value of the cosine function can be derived from the properties of a 45-45-90 triangle. In a 45-45-90 triangle, the lengths of the legs are equal, and the hypotenuse is [tex]\(\sqrt{2}\)[/tex] times the length of each leg.
Given this, the cosine of 45 degrees is the ratio of the adjacent side to the hypotenuse in a right triangle:
[tex]\[ \cos 45^\circ = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]
Now we need to match this value with the provided options. The given options are:
A. 1
B. [tex]\(\frac{1}{2}\)[/tex]
C. [tex]\(\frac{\sqrt{2}}{2}\)[/tex]
From the calculation, we see that [tex]\(\cos 45^\circ = \frac{\sqrt{2}}{2}\)[/tex]. Hence, the correct answer is:
[tex]\[ \boxed{\text{C. } \frac{\sqrt{2}}{2}} \][/tex]
First, we know that [tex]\(\cos 45^\circ\)[/tex] is a well-known value in trigonometry. For a 45-degree angle, the value of the cosine function can be derived from the properties of a 45-45-90 triangle. In a 45-45-90 triangle, the lengths of the legs are equal, and the hypotenuse is [tex]\(\sqrt{2}\)[/tex] times the length of each leg.
Given this, the cosine of 45 degrees is the ratio of the adjacent side to the hypotenuse in a right triangle:
[tex]\[ \cos 45^\circ = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]
Now we need to match this value with the provided options. The given options are:
A. 1
B. [tex]\(\frac{1}{2}\)[/tex]
C. [tex]\(\frac{\sqrt{2}}{2}\)[/tex]
From the calculation, we see that [tex]\(\cos 45^\circ = \frac{\sqrt{2}}{2}\)[/tex]. Hence, the correct answer is:
[tex]\[ \boxed{\text{C. } \frac{\sqrt{2}}{2}} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.