Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the value of [tex]\(\cos 45^\circ\)[/tex], we can refer to known trigonometric values associated with specific angles.
First, we know that [tex]\(\cos 45^\circ\)[/tex] is a well-known value in trigonometry. For a 45-degree angle, the value of the cosine function can be derived from the properties of a 45-45-90 triangle. In a 45-45-90 triangle, the lengths of the legs are equal, and the hypotenuse is [tex]\(\sqrt{2}\)[/tex] times the length of each leg.
Given this, the cosine of 45 degrees is the ratio of the adjacent side to the hypotenuse in a right triangle:
[tex]\[ \cos 45^\circ = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]
Now we need to match this value with the provided options. The given options are:
A. 1
B. [tex]\(\frac{1}{2}\)[/tex]
C. [tex]\(\frac{\sqrt{2}}{2}\)[/tex]
From the calculation, we see that [tex]\(\cos 45^\circ = \frac{\sqrt{2}}{2}\)[/tex]. Hence, the correct answer is:
[tex]\[ \boxed{\text{C. } \frac{\sqrt{2}}{2}} \][/tex]
First, we know that [tex]\(\cos 45^\circ\)[/tex] is a well-known value in trigonometry. For a 45-degree angle, the value of the cosine function can be derived from the properties of a 45-45-90 triangle. In a 45-45-90 triangle, the lengths of the legs are equal, and the hypotenuse is [tex]\(\sqrt{2}\)[/tex] times the length of each leg.
Given this, the cosine of 45 degrees is the ratio of the adjacent side to the hypotenuse in a right triangle:
[tex]\[ \cos 45^\circ = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \][/tex]
Now we need to match this value with the provided options. The given options are:
A. 1
B. [tex]\(\frac{1}{2}\)[/tex]
C. [tex]\(\frac{\sqrt{2}}{2}\)[/tex]
From the calculation, we see that [tex]\(\cos 45^\circ = \frac{\sqrt{2}}{2}\)[/tex]. Hence, the correct answer is:
[tex]\[ \boxed{\text{C. } \frac{\sqrt{2}}{2}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.