Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Julian fully simplifies this polynomial and then writes it in standard form.

[tex]\[ 4x^2 y^2 - 2y^4 - 8xy^3 + 9x^3 y + 6y^4 - 2xy^3 - 3x^4 + x^2 y^2 \][/tex]

If Julian wrote the last term as [tex]\(-3x^4\)[/tex], which must be the first term of his polynomial in standard form?

A. [tex]\(4y^4\)[/tex]
B. [tex]\(6y^4\)[/tex]
C. [tex]\(-2xy^3\)[/tex]
D. [tex]\(-10xy^3\)[/tex]

Sagot :

Let's start by fully simplifying the given polynomial by combining like terms:

The polynomial is:
[tex]\[ 4x^2y^2 - 2y^4 - 8xy^3 + 9x^3y + 6y^4 - 2xy^3 - 3x^4 + x^2y^2 \][/tex]

First, we group like terms together:

### Grouping the like terms:

1. [tex]\(x^4\)[/tex] terms:
[tex]\[ -3x^4 \][/tex]

2. [tex]\(x^3y\)[/tex] terms:
[tex]\[ 9x^3y \][/tex]

3. [tex]\(x^2y^2\)[/tex] terms:
[tex]\[ 4x^2y^2 + x^2y^2 = 5x^2y^2 \][/tex]

4. [tex]\(xy^3\)[/tex] terms:
[tex]\[ -8xy^3 - 2xy^3 = -10xy^3 \][/tex]

5. [tex]\(y^4\)[/tex] terms:
[tex]\[ -2y^4 + 6y^4 = 4y^4 \][/tex]

So, the simplified polynomial is:
[tex]\[ -3x^4 + 9x^3y + 5x^2y^2 - 10xy^3 + 4y^4 \][/tex]

Julian wrote the last term as [tex]\( -3x^4 \)[/tex]. In standard form, the polynomial is arranged in descending order of the powers of x and y. Therefore, the first term should be the one with the highest power of y, which is:

[tex]\[ 4y^4 \][/tex]

Thus, the correct answer is:

[tex]\[ 4y^4 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.