Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's break down the steps to determine which formula calculates the volume of water in the vase:
1. Calculate the volume of the vase:
- The vase is a cylinder with a diameter of 6 inches and a height of 12 inches.
- The radius of the vase is half of the diameter:
[tex]\[ r_{\text{vase}} = \frac{6 \text{ inches}}{2} = 3 \text{ inches} \][/tex]
- The formula for the volume of a cylinder is [tex]\(V = \pi r^2 h\)[/tex], where [tex]\(r\)[/tex] is the radius and [tex]\(h\)[/tex] is the height.
- Substituting the radius and height:
[tex]\[ V_{\text{vase}} = \pi (3 \text{ inches})^2 (12 \text{ inches}) = \pi \times 9 \text{ in}^2 \times 12 \text{ in} = 108 \pi \text{ in}^3 \][/tex]
2. Calculate the volume of one marble:
- Each marble is a sphere with a diameter of 3 inches.
- The radius of each marble is half of the diameter:
[tex]\[ r_{\text{marble}} = \frac{3 \text{ inches}}{2} = 1.5 \text{ inches} \][/tex]
- The formula for the volume of a sphere is [tex]\(V = \frac{4}{3} \pi r^3\)[/tex], where [tex]\(r\)[/tex] is the radius.
- Substituting the radius:
[tex]\[ V_{\text{marble}} = \frac{4}{3} \pi (1.5 \text{ inches})^3 = \frac{4}{3} \pi \times 3.375 \text{ in}^3 = 4.5 \pi \text{ in}^3 \][/tex]
3. Calculate the total volume of the 7 marbles:
[tex]\[ V_{\text{total marbles}} = 7 \times V_{\text{marble}} = 7 \times 4.5 \pi \text{ in}^3 = 31.5 \pi \text{ in}^3 \][/tex]
4. Calculate the volume of water in the vase:
- The volume of water is the volume of the vase minus the total volume of the marbles.
- Substituting the volumes:
[tex]\[ V_{\text{water}} = V_{\text{vase}} - V_{\text{total marbles}} = 108 \pi \text{ in}^3 - 31.5 \pi \text{ in}^3 = 76.5 \pi \text{ in}^3 \][/tex]
Now let's compare this to the provided options:
- First option: [tex]\(\pi(12 \text{ in})^2(3 \text{ in}) - 7\left(\frac{4}{3} \pi(1.5 \text{ in})^3\right)\)[/tex]
This doesn't match our expression for the vase volume calculation or marble volume correctly.
- Second option: [tex]\(\pi(3 \text{ in})^2(12 \text{ in}) - 7\left(\frac{4}{3} \pi(1.5 \text{ in})^3\right)\)[/tex]
This matches our calculations exactly:
- The volume of the vase [tex]\(\pi (3 \text{ in})^2 (12 \text{ in})\)[/tex]
- The total volume of the marbles [tex]\(7\left(\frac{4}{3} \pi (1.5 \text{ in})^3\right)\)[/tex]
This is the correct formula.
- Third option: [tex]\(n(12 \text{ in})^2(3 \text{ in}) - 1.5\left(\frac{4}{3} \pi(7 \text{ in})^2\right)\)[/tex]
This doesn't match our calculation at all.
- Fourth option: [tex]\(\pi(3 \text{ in})^2(12 \text{ in}) - 1.5\left(\frac{4}{3} \pi(7 \text{ in})^3\right)\)[/tex]
This also doesn't align with our values.
So, the correct formula is:
[tex]\[ \pi(3 \text{ in})^2(12 \text{ in})-7\left(\frac{4}{3} \pi(1.5 \text{ in})^3\right) \][/tex]
1. Calculate the volume of the vase:
- The vase is a cylinder with a diameter of 6 inches and a height of 12 inches.
- The radius of the vase is half of the diameter:
[tex]\[ r_{\text{vase}} = \frac{6 \text{ inches}}{2} = 3 \text{ inches} \][/tex]
- The formula for the volume of a cylinder is [tex]\(V = \pi r^2 h\)[/tex], where [tex]\(r\)[/tex] is the radius and [tex]\(h\)[/tex] is the height.
- Substituting the radius and height:
[tex]\[ V_{\text{vase}} = \pi (3 \text{ inches})^2 (12 \text{ inches}) = \pi \times 9 \text{ in}^2 \times 12 \text{ in} = 108 \pi \text{ in}^3 \][/tex]
2. Calculate the volume of one marble:
- Each marble is a sphere with a diameter of 3 inches.
- The radius of each marble is half of the diameter:
[tex]\[ r_{\text{marble}} = \frac{3 \text{ inches}}{2} = 1.5 \text{ inches} \][/tex]
- The formula for the volume of a sphere is [tex]\(V = \frac{4}{3} \pi r^3\)[/tex], where [tex]\(r\)[/tex] is the radius.
- Substituting the radius:
[tex]\[ V_{\text{marble}} = \frac{4}{3} \pi (1.5 \text{ inches})^3 = \frac{4}{3} \pi \times 3.375 \text{ in}^3 = 4.5 \pi \text{ in}^3 \][/tex]
3. Calculate the total volume of the 7 marbles:
[tex]\[ V_{\text{total marbles}} = 7 \times V_{\text{marble}} = 7 \times 4.5 \pi \text{ in}^3 = 31.5 \pi \text{ in}^3 \][/tex]
4. Calculate the volume of water in the vase:
- The volume of water is the volume of the vase minus the total volume of the marbles.
- Substituting the volumes:
[tex]\[ V_{\text{water}} = V_{\text{vase}} - V_{\text{total marbles}} = 108 \pi \text{ in}^3 - 31.5 \pi \text{ in}^3 = 76.5 \pi \text{ in}^3 \][/tex]
Now let's compare this to the provided options:
- First option: [tex]\(\pi(12 \text{ in})^2(3 \text{ in}) - 7\left(\frac{4}{3} \pi(1.5 \text{ in})^3\right)\)[/tex]
This doesn't match our expression for the vase volume calculation or marble volume correctly.
- Second option: [tex]\(\pi(3 \text{ in})^2(12 \text{ in}) - 7\left(\frac{4}{3} \pi(1.5 \text{ in})^3\right)\)[/tex]
This matches our calculations exactly:
- The volume of the vase [tex]\(\pi (3 \text{ in})^2 (12 \text{ in})\)[/tex]
- The total volume of the marbles [tex]\(7\left(\frac{4}{3} \pi (1.5 \text{ in})^3\right)\)[/tex]
This is the correct formula.
- Third option: [tex]\(n(12 \text{ in})^2(3 \text{ in}) - 1.5\left(\frac{4}{3} \pi(7 \text{ in})^2\right)\)[/tex]
This doesn't match our calculation at all.
- Fourth option: [tex]\(\pi(3 \text{ in})^2(12 \text{ in}) - 1.5\left(\frac{4}{3} \pi(7 \text{ in})^3\right)\)[/tex]
This also doesn't align with our values.
So, the correct formula is:
[tex]\[ \pi(3 \text{ in})^2(12 \text{ in})-7\left(\frac{4}{3} \pi(1.5 \text{ in})^3\right) \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.