Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's examine each of the given equations to determine which one accurately relates to Hector's 10 cups of flour:
1. [tex]\( 10 + \frac{2}{5} = 25 \)[/tex]
- In this equation, we have 10 plus two-fifths.
- [tex]\( 10 + \frac{2}{5} \)[/tex] can be calculated as [tex]\( 10 + 0.4 \)[/tex].
- This sum equals [tex]\( 10.4 \)[/tex], not 25, so this equation does not make sense.
2. [tex]\( 10 \times \frac{2}{5} = 4 \)[/tex]
- In this equation, we have 10 multiplied by two-fifths.
- [tex]\( 10 \times \frac{2}{5} \)[/tex] can be calculated as [tex]\( 10 \times 0.4 \)[/tex], which equals 4.
- This equation is correct because it makes logical sense.
3. [tex]\( \frac{2}{5} + 10 = \frac{1}{25} \)[/tex]
- Here, we have two-fifths plus 10.
- [tex]\( \frac{2}{5} + 10 \)[/tex] can be calculated as [tex]\( 0.4 + 10 \)[/tex], which equals [tex]\( 10.4 \)[/tex].
- This is not equal to [tex]\( \frac{1}{25} \)[/tex] (which is 0.04), so this equation is incorrect.
4. [tex]\( \frac{5}{2} + 10 = \frac{1}{4} \)[/tex]
- Here, we have five-halves plus 10.
- [tex]\( \frac{5}{2} + 10 \)[/tex] can be calculated as [tex]\( 2.5 + 10 \)[/tex], which equals [tex]\( 12.5 \)[/tex].
- This is not equal to [tex]\( \frac{1}{4} \)[/tex] (which is 0.25), so this equation is incorrect.
Thus, the correct equation that shows how to determine the cups of flour in Hector's situation is:
[tex]\[ 10 \times \frac{2}{5} = 4 \][/tex]
Therefore, the correct choice is the second one.
1. [tex]\( 10 + \frac{2}{5} = 25 \)[/tex]
- In this equation, we have 10 plus two-fifths.
- [tex]\( 10 + \frac{2}{5} \)[/tex] can be calculated as [tex]\( 10 + 0.4 \)[/tex].
- This sum equals [tex]\( 10.4 \)[/tex], not 25, so this equation does not make sense.
2. [tex]\( 10 \times \frac{2}{5} = 4 \)[/tex]
- In this equation, we have 10 multiplied by two-fifths.
- [tex]\( 10 \times \frac{2}{5} \)[/tex] can be calculated as [tex]\( 10 \times 0.4 \)[/tex], which equals 4.
- This equation is correct because it makes logical sense.
3. [tex]\( \frac{2}{5} + 10 = \frac{1}{25} \)[/tex]
- Here, we have two-fifths plus 10.
- [tex]\( \frac{2}{5} + 10 \)[/tex] can be calculated as [tex]\( 0.4 + 10 \)[/tex], which equals [tex]\( 10.4 \)[/tex].
- This is not equal to [tex]\( \frac{1}{25} \)[/tex] (which is 0.04), so this equation is incorrect.
4. [tex]\( \frac{5}{2} + 10 = \frac{1}{4} \)[/tex]
- Here, we have five-halves plus 10.
- [tex]\( \frac{5}{2} + 10 \)[/tex] can be calculated as [tex]\( 2.5 + 10 \)[/tex], which equals [tex]\( 12.5 \)[/tex].
- This is not equal to [tex]\( \frac{1}{4} \)[/tex] (which is 0.25), so this equation is incorrect.
Thus, the correct equation that shows how to determine the cups of flour in Hector's situation is:
[tex]\[ 10 \times \frac{2}{5} = 4 \][/tex]
Therefore, the correct choice is the second one.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.